Nuprl Lemma : product-eq-0-mod-prime

p,a,b:ℤ.  (prime(p)  ((a b) ≡ mod p)  ((a ≡ mod p) ∨ (b ≡ mod p)))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m prime: prime(a) all: x:A. B[x] implies:  Q or: P ∨ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  subtype_rel: A ⊆B prop: and: P ∧ Q top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q decidable: Dec(P) member: t ∈ T exists: x:A. B[x] divides: a eqmod: a ≡ mod m implies:  Q all: x:A. B[x] guard: {T}
Lemmas referenced :  prime_wf eqmod_wf int_subtype_base equal-wf-base int_formula_prop_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermSubtract_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int prime_divs_prod
Rules used in proof :  multiplyEquality applyEquality baseClosed closedConclusion baseApply independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality isectElimination unionElimination hypothesis because_Cache dependent_functionElimination extract_by_obid introduction hypothesisEquality dependent_pairFormation cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inrFormation inlFormation

Latex:
\mforall{}p,a,b:\mBbbZ{}.    (prime(p)  {}\mRightarrow{}  ((a  *  b)  \mequiv{}  0  mod  p)  {}\mRightarrow{}  ((a  \mequiv{}  0  mod  p)  \mvee{}  (b  \mequiv{}  0  mod  p)))



Date html generated: 2018_05_21-PM-00_56_03
Last ObjectModification: 2018_01_01-PM-00_04_06

Theory : num_thy_1


Home Index