Step
*
of Lemma
sign-inverse
∀[n:ℕ]. ∀[f:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ]. (permutation-sign(n;inv(f)) = permutation-sign(n;f) ∈ {s:ℤ| |s| = 1 ∈ ℤ} )
BY
{ (InstLemma `permutation-sign-compose` []
THEN RepeatFor 2 (ParallelLast')
THEN (InstHyp [⌜inv(f)⌝] (-1)⋅ THENA Auto)) }
1
1. n : ℕ
2. f : {p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)}
3. ∀[g:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ]
(permutation-sign(n;f o g) = (permutation-sign(n;f) * permutation-sign(n;g)) ∈ {s:ℤ| |s| = 1 ∈ ℤ} )
4. permutation-sign(n;f o inv(f)) = (permutation-sign(n;f) * permutation-sign(n;inv(f))) ∈ {s:ℤ| |s| = 1 ∈ ℤ}
⊢ permutation-sign(n;inv(f)) = permutation-sign(n;f) ∈ {s:ℤ| |s| = 1 ∈ ℤ}
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\{p:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n| Inj(\mBbbN{}n;\mBbbN{}n;p)\} ]. (permutation-sign(n;inv(f)) = permutation-sign(n;f))
By
Latex:
(InstLemma `permutation-sign-compose` []
THEN RepeatFor 2 (ParallelLast')
THEN (InstHyp [\mkleeneopen{}inv(f)\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
Home
Index