Step * of Lemma sign-inverse

[n:ℕ]. ∀[f:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ].  (permutation-sign(n;inv(f)) permutation-sign(n;f) ∈ {s:ℤ|s| 1 ∈ ℤ)
BY
(InstLemma `permutation-sign-compose` []
   THEN RepeatFor (ParallelLast')
   THEN (InstHyp [⌜inv(f)⌝(-1)⋅ THENA Auto)) }

1
1. : ℕ
2. {p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} 
3. ∀[g:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ]
     (permutation-sign(n;f g) (permutation-sign(n;f) permutation-sign(n;g)) ∈ {s:ℤ|s| 1 ∈ ℤ)
4. permutation-sign(n;f inv(f)) (permutation-sign(n;f) permutation-sign(n;inv(f))) ∈ {s:ℤ|s| 1 ∈ ℤ
⊢ permutation-sign(n;inv(f)) permutation-sign(n;f) ∈ {s:ℤ|s| 1 ∈ ℤ


Latex:


Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ].    (permutation-sign(n;inv(f))  =  permutation-sign(n;f))


By


Latex:
(InstLemma  `permutation-sign-compose`  []
  THEN  RepeatFor  2  (ParallelLast')
  THEN  (InstHyp  [\mkleeneopen{}inv(f)\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto))




Home Index