Nuprl Lemma : sign-inverse

[n:ℕ]. ∀[f:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ].  (permutation-sign(n;inv(f)) permutation-sign(n;f) ∈ {s:ℤ|s| 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) funinv: inv(f) inject: Inj(A;B;f) absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: nat: member: t ∈ T uall: [x:A]. B[x] true: True sq_stable: SqStable(P) top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  and: P ∧ Q lelt: i ≤ j < k squash: T int_seg: {i..j-} guard: {T} label: ...$L... t compose: g subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q absval: |i| sq_type: SQType(T) uiff: uiff(P;Q) less_than': less_than'(a;b) le: A ≤ B
Lemmas referenced :  nat_wf set_wf int_seg_wf inject_wf funinv_wf2 permutation-sign-compose lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le sq_stable__equal int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int nat_properties int_seg_properties permutation-sign-id permutation-sign_wf equal-wf-base equal_wf squash_wf true_wf funinv-property iff_weakening_equal set_subtype_base int_subtype_base int_term_value_mul_lemma itermMultiply_wf subtype_base_sq absval_pos le_wf false_wf absval_cases
Rules used in proof :  lambdaEquality sqequalRule functionEquality applyEquality functionExtensionality because_Cache natural_numberEquality dependent_set_memberEquality rename setElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination imageElimination productElimination baseClosed imageMemberEquality equalityTransitivity intEquality setEquality applyLambdaEquality hyp_replacement equalitySymmetry universeEquality lambdaFormation closedConclusion baseApply promote_hyp minusEquality cumulativity instantiate

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ].    (permutation-sign(n;inv(f))  =  permutation-sign(n;f))



Date html generated: 2018_05_21-PM-00_59_16
Last ObjectModification: 2017_12_11-AM-10_07_02

Theory : num_thy_1


Home Index