Nuprl Lemma : sign-inverse
∀[n:ℕ]. ∀[f:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ].  (permutation-sign(n;inv(f)) = permutation-sign(n;f) ∈ {s:ℤ| |s| = 1 ∈ ℤ} )
Proof
Definitions occuring in Statement : 
permutation-sign: permutation-sign(n;f)
, 
funinv: inv(f)
, 
inject: Inj(A;B;f)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
sq_stable: SqStable(P)
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
guard: {T}
, 
label: ...$L... t
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
absval: |i|
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
Lemmas referenced : 
nat_wf, 
set_wf, 
int_seg_wf, 
inject_wf, 
funinv_wf2, 
permutation-sign-compose, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
sq_stable__equal, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_properties, 
int_seg_properties, 
permutation-sign-id, 
permutation-sign_wf, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
funinv-property, 
iff_weakening_equal, 
set_subtype_base, 
int_subtype_base, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
subtype_base_sq, 
absval_pos, 
le_wf, 
false_wf, 
absval_cases
Rules used in proof : 
lambdaEquality, 
sqequalRule, 
functionEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
natural_numberEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
imageElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
equalityTransitivity, 
intEquality, 
setEquality, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
universeEquality, 
lambdaFormation, 
closedConclusion, 
baseApply, 
promote_hyp, 
minusEquality, 
cumulativity, 
instantiate
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ].    (permutation-sign(n;inv(f))  =  permutation-sign(n;f))
Date html generated:
2018_05_21-PM-00_59_16
Last ObjectModification:
2017_12_11-AM-10_07_02
Theory : num_thy_1
Home
Index