Nuprl Lemma : permutation-sign-compose

[n:ℕ]. ∀[f,g:{p:ℕn ⟶ ℕn| Inj(ℕn;ℕn;p)} ].
  (permutation-sign(n;f g) (permutation-sign(n;f) permutation-sign(n;g)) ∈ {s:ℤ|s| 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) inject: Inj(A;B;f) compose: g absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  inject: Inj(A;B;f) nequal: a ≠ b ∈  ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b flip: (i, j) surject: Surj(A;B;f) compose: g so_apply: x[s] less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] false: False top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) nat: sq_type: SQType(T) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  absval-minus int_term_value_minus_lemma itermMinus_wf inject-compose permutation-sign-flip decidable__equal_int_seg int_seg_properties nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma decidable__le intformle_wf int_formula_prop_le_lemma decidable__lt intformless_wf int_formula_prop_less_lemma le_wf less_than_wf bfalse_wf lelt_wf eq_int_eq_true btrue_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int bool_wf bool_subtype_base flip_wf injection-is-surjection permutation-sign-id one-mul nat_wf istype-nat istype-less_than absval_wf set_subtype_base compose_wf permutation-sign_wf equal-wf-base inject_wf int_seg_wf permutation-generators3 int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int int_subtype_base subtype_base_sq iff_weakening_equal subtype_rel_self absval_mul istype-universe true_wf squash_wf equal_wf
Rules used in proof :  Error :equalityIsType4,  int_eqEquality independent_pairFormation Error :productIsType,  equalityElimination Error :equalityIsType1,  promote_hyp functionExtensionality applyLambdaEquality hyp_replacement Error :functionExtensionality_alt,  Error :functionIsTypeImplies,  axiomEquality Error :functionIsType,  setEquality functionEquality Error :setIsType,  sqequalBase closedConclusion baseApply Error :equalityIstype,  voidElimination Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  approximateComputation unionElimination dependent_functionElimination cumulativity independent_functionElimination productElimination independent_isectElimination because_Cache baseClosed imageMemberEquality sqequalRule natural_numberEquality intEquality universeEquality instantiate Error :inhabitedIsType,  Error :universeIsType,  equalitySymmetry hypothesis equalityTransitivity isectElimination extract_by_obid introduction imageElimination sqequalHypSubstitution Error :lambdaEquality_alt,  applyEquality hypothesisEquality multiplyEquality Error :dependent_set_memberEquality_alt,  rename setElimination Error :lambdaFormation_alt,  thin cut Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\{p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;p)\}  ].
    (permutation-sign(n;f  o  g)  =  (permutation-sign(n;f)  *  permutation-sign(n;g)))



Date html generated: 2019_06_20-PM-02_26_55
Last ObjectModification: 2019_06_19-PM-00_17_42

Theory : num_thy_1


Home Index