Nuprl Lemma : permutation-sign-flip

[n:ℕ]. ∀[f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ]. ∀[u,v:ℕn].
  permutation-sign(n;f (u, v)) (-permutation-sign(n;f)) ∈ ℤ supposing ¬(u v ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) flip: (i, j) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x] minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} and: P ∧ Q cand: c∧ B lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T nat: ge: i ≥  subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} top: Top true: True iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) uiff: uiff(P;Q) absval: |i| compose: g flip: (i, j) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  permutation-sign-flip-adjacent absval_wf subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf set_subtype_base lelt_wf int_subtype_base istype-void int_seg_wf inject_wf istype-nat intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma ge_wf istype-less_than subtract-1-ge-0 istype-le decidable__lt subtype_base_sq equal_wf squash_wf true_wf itermSubtract_wf int_term_value_subtract_lemma permutation-sign_wf equal-wf-base iff_weakening_equal absval_ubound false_wf le_wf decidable__equal_int intformeq_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_minus_lemma flip_symmetry compose_wf less_than_wf set_wf nat_wf subtract-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int ifthenelse_wf flip_wf compose-injections flip-injection absval_pos minus_functionality_wrt_eq absval-diff-symmetry
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination setElimination rename independent_isectElimination independent_pairFormation productElimination imageElimination applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule addEquality because_Cache natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  universeIsType voidElimination functionIsType equalityIstype intEquality sqequalBase isect_memberEquality_alt axiomEquality isectIsTypeImplies setIsType lambdaFormation_alt intWeakElimination functionIsTypeImplies productIsType instantiate cumulativity lambdaEquality universeEquality dependent_set_memberEquality dependent_pairFormation isect_memberEquality voidEquality minusEquality setEquality baseApply closedConclusion baseClosed imageMemberEquality lambdaFormation dependent_set_memberEquality_alt isect_memberFormation productEquality functionEquality functionExtensionality hyp_replacement applyLambdaEquality equalityElimination promote_hyp

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].  \mforall{}[u,v:\mBbbN{}n].
    permutation-sign(n;f  o  (u,  v))  =  (-permutation-sign(n;f))  supposing  \mneg{}(u  =  v)



Date html generated: 2020_05_19-PM-10_02_14
Last ObjectModification: 2020_01_04-PM-08_25_03

Theory : num_thy_1


Home Index