Nuprl Lemma : permutation-sign-flip
∀[n:ℕ]. ∀[f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ]. ∀[u,v:ℕn].
permutation-sign(n;f o (u, v)) = (-permutation-sign(n;f)) ∈ ℤ supposing ¬(u = v ∈ ℤ)
Proof
Definitions occuring in Statement :
permutation-sign: permutation-sign(n;f)
,
flip: (i, j)
,
inject: Inj(A;B;f)
,
compose: f o g
,
int_seg: {i..j-}
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
minus: -n
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
and: P ∧ Q
,
cand: A c∧ B
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
nat: ℕ
,
ge: i ≥ j
,
subtype_rel: A ⊆r B
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
guard: {T}
,
top: Top
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than': less_than'(a;b)
,
uiff: uiff(P;Q)
,
absval: |i|
,
compose: f o g
,
flip: (i, j)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
nequal: a ≠ b ∈ T
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
permutation-sign-flip-adjacent,
absval_wf,
subtract_wf,
int_seg_properties,
nat_properties,
decidable__le,
full-omega-unsat,
intformnot_wf,
intformle_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
set_subtype_base,
lelt_wf,
int_subtype_base,
istype-void,
int_seg_wf,
inject_wf,
istype-nat,
intformand_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
ge_wf,
istype-less_than,
subtract-1-ge-0,
istype-le,
decidable__lt,
subtype_base_sq,
equal_wf,
squash_wf,
true_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
permutation-sign_wf,
equal-wf-base,
iff_weakening_equal,
absval_ubound,
false_wf,
le_wf,
decidable__equal_int,
intformeq_wf,
itermMinus_wf,
int_formula_prop_eq_lemma,
int_term_value_minus_lemma,
flip_symmetry,
compose_wf,
less_than_wf,
set_wf,
nat_wf,
subtract-add-cancel,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
ifthenelse_wf,
flip_wf,
compose-injections,
flip-injection,
absval_pos,
minus_functionality_wrt_eq,
absval-diff-symmetry
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
setElimination,
rename,
independent_isectElimination,
independent_pairFormation,
productElimination,
imageElimination,
applyEquality,
lambdaEquality_alt,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
sqequalRule,
addEquality,
because_Cache,
natural_numberEquality,
unionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
Error :memTop,
universeIsType,
voidElimination,
functionIsType,
equalityIstype,
intEquality,
sqequalBase,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
setIsType,
lambdaFormation_alt,
intWeakElimination,
functionIsTypeImplies,
productIsType,
instantiate,
cumulativity,
lambdaEquality,
universeEquality,
dependent_set_memberEquality,
dependent_pairFormation,
isect_memberEquality,
voidEquality,
minusEquality,
setEquality,
baseApply,
closedConclusion,
baseClosed,
imageMemberEquality,
lambdaFormation,
dependent_set_memberEquality_alt,
isect_memberFormation,
productEquality,
functionEquality,
functionExtensionality,
hyp_replacement,
applyLambdaEquality,
equalityElimination,
promote_hyp
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\{f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}n| Inj(\mBbbN{}n;\mBbbN{}n;f)\} ]. \mforall{}[u,v:\mBbbN{}n].
permutation-sign(n;f o (u, v)) = (-permutation-sign(n;f)) supposing \mneg{}(u = v)
Date html generated:
2020_05_19-PM-10_02_14
Last ObjectModification:
2020_01_04-PM-08_25_03
Theory : num_thy_1
Home
Index