Nuprl Lemma : permutation-sign-flip-adjacent

[n:ℕ]. ∀[f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ]. ∀[u:ℕ1].
  (permutation-sign(n;f (u, 1)) (-permutation-sign(n;f)) ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) flip: (i, j) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: nat: compose: g permutation-sign: permutation-sign(n;f) member: t ∈ T uall: [x:A]. B[x] guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) uimplies: supposing a true: True false: False assert: b bnot: ¬bb or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} squash: T top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) lelt: i ≤ j < k ge: i ≥  not: ¬A nequal: a ≠ b ∈  flip: (i, j) decidable: Dec(P) subtract: m less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q sign: sign(x) lt_int: i <j le_int: i ≤j inject: Inj(A;B;f)
Lemmas referenced :  nat_wf inject_wf set_wf subtract_wf int_seg_wf int_subtype_base subtype_base_sq neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf true_wf squash_wf int-prod_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties le_wf int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma itermAdd_wf itermConstant_wf intformle_wf decidable__le int-prod-unroll-hi add-subtract-cancel lelt_wf int_formula_prop_less_lemma int_term_value_subtract_lemma intformless_wf itermSubtract_wf add-member-int_seg2 sign_wf false_wf int_seg_subtype_nat decidable__lt int_term_value_mul_lemma itermMultiply_wf decidable__equal_int mul_assoc iff_weakening_equal assert_of_le_int le_int_wf mul-one ifthenelse_wf btrue_wf eq_int_eq_true int_seg_subtype flip_wf int-prod-isolate bfalse_wf equal-wf-base eq_int_eq_false minus_functionality_wrt_eq minus-one-mul
Rules used in proof :  applyEquality functionExtensionality lambdaEquality functionEquality because_Cache axiomEquality isect_memberEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination intEquality cumulativity instantiate baseClosed imageMemberEquality voidElimination promote_hyp dependent_pairFormation productElimination equalityElimination unionElimination lambdaFormation imageElimination independent_pairFormation voidEquality int_eqEquality approximateComputation addEquality dependent_set_memberEquality levelHypothesis equalityUniverse universeEquality multiplyEquality applyLambdaEquality closedConclusion baseApply minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].  \mforall{}[u:\mBbbN{}n  -  1].
    (permutation-sign(n;f  o  (u,  u  +  1))  =  (-permutation-sign(n;f)))



Date html generated: 2018_05_21-PM-00_58_42
Last ObjectModification: 2017_12_11-AM-00_05_06

Theory : num_thy_1


Home Index