Nuprl Lemma : permutation-sign-flip-adjacent
∀[n:ℕ]. ∀[f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ]. ∀[u:ℕn - 1].
  (permutation-sign(n;f o (u, u + 1)) = (-permutation-sign(n;f)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
permutation-sign: permutation-sign(n;f)
, 
flip: (i, j)
, 
inject: Inj(A;B;f)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
nat: ℕ
, 
compose: f o g
, 
permutation-sign: permutation-sign(n;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
true: True
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
squash: ↓T
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
flip: (i, j)
, 
decidable: Dec(P)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sign: sign(x)
, 
lt_int: i <z j
, 
le_int: i ≤z j
, 
inject: Inj(A;B;f)
Lemmas referenced : 
nat_wf, 
inject_wf, 
set_wf, 
subtract_wf, 
int_seg_wf, 
int_subtype_base, 
subtype_base_sq, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
true_wf, 
squash_wf, 
int-prod_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
le_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
int-prod-unroll-hi, 
add-subtract-cancel, 
lelt_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
intformless_wf, 
itermSubtract_wf, 
add-member-int_seg2, 
sign_wf, 
false_wf, 
int_seg_subtype_nat, 
decidable__lt, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
decidable__equal_int, 
mul_assoc, 
iff_weakening_equal, 
assert_of_le_int, 
le_int_wf, 
mul-one, 
ifthenelse_wf, 
btrue_wf, 
eq_int_eq_true, 
int_seg_subtype, 
flip_wf, 
int-prod-isolate, 
bfalse_wf, 
equal-wf-base, 
eq_int_eq_false, 
minus_functionality_wrt_eq, 
minus-one-mul
Rules used in proof : 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
functionEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_isectElimination, 
intEquality, 
cumulativity, 
instantiate, 
baseClosed, 
imageMemberEquality, 
voidElimination, 
promote_hyp, 
dependent_pairFormation, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
imageElimination, 
independent_pairFormation, 
voidEquality, 
int_eqEquality, 
approximateComputation, 
addEquality, 
dependent_set_memberEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
multiplyEquality, 
applyLambdaEquality, 
closedConclusion, 
baseApply, 
minusEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].  \mforall{}[u:\mBbbN{}n  -  1].
    (permutation-sign(n;f  o  (u,  u  +  1))  =  (-permutation-sign(n;f)))
Date html generated:
2018_05_21-PM-00_58_42
Last ObjectModification:
2017_12_11-AM-00_05_06
Theory : num_thy_1
Home
Index