Nuprl Lemma : int-prod-isolate

[n:ℕ]. ∀[m:ℕn]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) (if (x =z m) then else f[x] fi  x < n) f[m]) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} sq_type: SQType(T) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} member: t ∈ T uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T nequal: a ≠ b ∈ 
Lemmas referenced :  nat_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf false_wf add-member-int_seg1 le_wf int_term_value_subtract_lemma int_formula_prop_le_lemma itermSubtract_wf intformle_wf decidable__le int_seg_properties subtract_wf int_seg_wf eq_int_wf ifthenelse_wf int_subtype_base subtype_base_sq lelt_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties int-prod-split iff_weakening_equal btrue_wf eq_int_eq_true true_wf squash_wf zero-add int-prod-single int_formula_prop_eq_lemma intformeq_wf int_seg_subtype_nat int-prod_wf int_term_value_mul_lemma itermMultiply_wf decidable__equal_int
Rules used in proof :  axiomEquality functionEquality promote_hyp equalityElimination lambdaFormation functionExtensionality applyEquality equalitySymmetry equalityTransitivity cumulativity instantiate because_Cache sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality addEquality dependent_functionElimination hypothesis independent_pairFormation productElimination dependent_set_memberEquality rename setElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality universeEquality imageElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mPi{}(f[x]  |  x  <  n)  =  (\mPi{}(if  (x  =\msubz{}  m)  then  1  else  f[x]  fi    |  x  <  n)  *  f[m]))



Date html generated: 2018_05_21-PM-00_29_36
Last ObjectModification: 2017_12_10-PM-11_43_03

Theory : int_2


Home Index