Nuprl Lemma : permutation-sign_wf

[n:ℕ]. ∀[f:ℕn ⟶ ℕn].  (permutation-sign(n;f) ∈ {s:ℤ|s| 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  permutation-sign: permutation-sign(n;f) absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  lelt: i ≤ j < k int_seg: {i..j-} or: P ∨ Q decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True less_than': less_than'(a;b) le: A ≤ B squash: T so_apply: x[s] so_lambda: λ2x.t[x] permutation-sign: permutation-sign(n;f) prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff absval: |i| ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 sign: sign(x)
Lemmas referenced :  nat_wf decidable__lt int_seg_properties sign_wf int_seg_subtype_nat int-prod_wf_absval_1 int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_subtype_base equal-wf-base iff_weakening_equal le_wf false_wf absval_pos true_wf squash_wf equal_wf int_prod0_lemma int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_le_int eqtt_to_assert bool_wf lelt_wf le_int_wf
Rules used in proof :  unionElimination closedConclusion baseApply productElimination baseClosed imageMemberEquality because_Cache universeEquality imageElimination applyEquality dependent_set_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity instantiate promote_hyp equalityElimination functionExtensionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n].    (permutation-sign(n;f)  \mmember{}  \{s:\mBbbZ{}|  |s|  =  1\}  )



Date html generated: 2018_05_21-PM-00_57_49
Last ObjectModification: 2017_12_10-PM-00_52_30

Theory : num_thy_1


Home Index