Nuprl Lemma : int-prod_wf_absval_1
∀[n:ℕ]. ∀[f:ℕn ⟶ {s:ℤ| |s| = 1 ∈ ℤ} ].  (Π(f[x] | x < n) ∈ {s:ℤ| |s| = 1 ∈ ℤ} )
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
squash: ↓T
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
int-prod: Π(f[x] | x < k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
subtype_base_sq, 
iff_weakening_equal, 
subtype_rel_self, 
absval_mul, 
istype-universe, 
true_wf, 
squash_wf, 
istype-nat, 
int_seg_wf, 
istype-int, 
equal-wf-base, 
int_subtype_base, 
istype-le, 
istype-void, 
absval_pos, 
absval_wf, 
equal_wf, 
primrec_wf
Rules used in proof : 
Error :dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
applyLambdaEquality, 
cumulativity, 
promote_hyp, 
productElimination, 
independent_isectElimination, 
imageMemberEquality, 
universeEquality, 
instantiate, 
imageElimination, 
Error :isectIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :functionIsType, 
axiomEquality, 
Error :setIsType, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
multiplyEquality, 
sqequalBase, 
baseClosed, 
baseApply, 
Error :equalityIstype, 
voidElimination, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
Error :inhabitedIsType, 
rename, 
setElimination, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
intEquality, 
setEquality, 
closedConclusion, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \{s:\mBbbZ{}|  |s|  =  1\}  ].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \{s:\mBbbZ{}|  |s|  =  1\}  )
Date html generated:
2019_06_20-PM-01_18_30
Last ObjectModification:
2019_06_19-AM-10_34_48
Theory : int_2
Home
Index