Nuprl Lemma : int-prod_wf_absval_1

[n:ℕ]. ∀[f:ℕn ⟶ {s:ℤ|s| 1 ∈ ℤ].  (f[x] x < n) ∈ {s:ℤ|s| 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True squash: T so_apply: x[s] all: x:A. B[x] false: False implies:  Q not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B prop: nat: subtype_rel: A ⊆B int-prod: Π(f[x] x < k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int subtype_base_sq iff_weakening_equal subtype_rel_self absval_mul istype-universe true_wf squash_wf istype-nat int_seg_wf istype-int equal-wf-base int_subtype_base istype-le istype-void absval_pos absval_wf equal_wf primrec_wf
Rules used in proof :  Error :dependent_pairFormation_alt,  approximateComputation unionElimination applyLambdaEquality cumulativity promote_hyp productElimination independent_isectElimination imageMemberEquality universeEquality instantiate imageElimination Error :isectIsTypeImplies,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :functionIsType,  axiomEquality Error :setIsType,  independent_functionElimination dependent_functionElimination because_Cache multiplyEquality sqequalBase baseClosed baseApply Error :equalityIstype,  voidElimination Error :lambdaFormation_alt,  independent_pairFormation Error :dependent_set_memberEquality_alt,  natural_numberEquality equalitySymmetry equalityTransitivity Error :inhabitedIsType,  rename setElimination Error :lambdaEquality_alt,  applyEquality hypothesis hypothesisEquality intEquality setEquality closedConclusion thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \{s:\mBbbZ{}|  |s|  =  1\}  ].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \{s:\mBbbZ{}|  |s|  =  1\}  )



Date html generated: 2019_06_20-PM-01_18_30
Last ObjectModification: 2019_06_19-AM-10_34_48

Theory : int_2


Home Index