Nuprl Lemma : flip-injection

[n:ℕ]. ∀[i,j:ℕn].  Inj(ℕn;ℕn;(i, j))


Proof




Definitions occuring in Statement :  flip: (i, j) inject: Inj(A;B;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a flip: (i, j) guard: {T} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: ifthenelse: if then else fi  bfalse: ff squash: T true: True iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb btrue: tt assert: b sq_type: SQType(T) uiff: uiff(P;Q)
Lemmas referenced :  set_subtype_base lelt_wf istype-int int_subtype_base int_seg_wf istype-nat eq_int_wf int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than assert_wf bnot_wf not_wf equal-wf-base istype-assert equal_wf squash_wf true_wf istype-universe bool_wf eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal bfalse_wf bool_subtype_base assert_elim btrue_neq_bfalse subtype_rel-equal base_wf subtype_base_sq iff_imp_equal_bool iff_functionality_wrt_iff false_wf iff_weakening_uiff assert_of_eq_int ifthenelse_wf bool_cases eqtt_to_assert eqff_to_assert iff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  hypothesis Error :equalityIstype,  because_Cache sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality Error :lambdaEquality_alt,  natural_numberEquality setElimination rename independent_isectElimination sqequalBase equalitySymmetry dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  equalityTransitivity applyLambdaEquality productElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :functionIsType,  imageElimination instantiate universeEquality imageMemberEquality Error :equalityIsType4,  cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i,j:\mBbbN{}n].    Inj(\mBbbN{}n;\mBbbN{}n;(i,  j))



Date html generated: 2019_06_20-PM-01_36_53
Last ObjectModification: 2018_11_24-AM-09_35_07

Theory : list_1


Home Index