Nuprl Lemma : permutation-generators3

n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . ∀i,j:ℕn.  P[f]  P[f (i, j)] supposing i < j)
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} P[f]))


Proof




Definitions occuring in Statement :  flip: (i, j) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  subtype_rel: A ⊆B int_seg: {i..j-} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] nat: prop: implies:  Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] true: True squash: T less_than: a < b top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k guard: {T} rev_implies:  Q iff: ⇐⇒ Q compose-flips: compose-flips(flips) sq_stable: SqStable(P) compose: g
Lemmas referenced :  nat_wf identity-injection less_than_wf isect_wf all_wf inject_wf int_seg_wf set_wf permutation-generators2 lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties false_wf member-less_than iff_weakening_equal inject-compose rotate-injection rotate-as-flips equal_wf compose_wf list_wf compose-flips_wf compose-flips-injection reduce_cons_lemma map_cons_lemma reduce_nil_lemma map_nil_lemma list_induction sq_stable__inject flip-injection flip_wf comp_assoc true_wf squash_wf flip_symmetry int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_seg_properties flip_identity
Rules used in proof :  cumulativity instantiate universeEquality dependent_set_memberEquality setEquality applyEquality functionExtensionality lambdaEquality sqequalRule because_Cache rename setElimination natural_numberEquality functionEquality independent_functionElimination isectElimination isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut baseClosed imageMemberEquality voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation approximateComputation unionElimination independent_pairFormation independent_isectElimination equalitySymmetry equalityTransitivity applyLambdaEquality productElimination productEquality levelHypothesis hyp_replacement addLevel imageElimination

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  \mforall{}i,j:\mBbbN{}n.    P[f]  {}\mRightarrow{}  P[f  o  (i,  j)]  supposing  i  <  j)
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))



Date html generated: 2018_05_21-PM-00_42_43
Last ObjectModification: 2017_12_10-PM-03_57_02

Theory : list_1


Home Index