Nuprl Lemma : compose-flips-injection
∀n:ℕ. ∀L:(ℕn × ℕn) List.  Inj(ℕn;ℕn;compose-flips(L))
Proof
Definitions occuring in Statement : 
compose-flips: compose-flips(flips)
, 
list: T List
, 
inject: Inj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
top: Top
, 
compose-flips: compose-flips(flips)
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
flip-injection, 
flip_wf, 
inject-compose, 
reduce_cons_lemma, 
map_cons_lemma, 
identity-injection, 
reduce_nil_lemma, 
map_nil_lemma, 
list_wf, 
compose-flips_wf, 
inject_wf, 
int_seg_wf, 
list_induction
Rules used in proof : 
independent_isectElimination, 
productElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_functionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
productEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.    Inj(\mBbbN{}n;\mBbbN{}n;compose-flips(L))
Date html generated:
2018_05_21-PM-00_42_04
Last ObjectModification:
2017_12_10-PM-03_41_14
Theory : list_1
Home
Index