Nuprl Lemma : compose-flips-injection

n:ℕ. ∀L:(ℕn × ℕn) List.  Inj(ℕn;ℕn;compose-flips(L))


Proof




Definitions occuring in Statement :  compose-flips: compose-flips(flips) list: List inject: Inj(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  prop: uimplies: supposing a top: Top compose-flips: compose-flips(flips) implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  nat_wf flip-injection flip_wf inject-compose reduce_cons_lemma map_cons_lemma identity-injection reduce_nil_lemma map_nil_lemma list_wf compose-flips_wf inject_wf int_seg_wf list_induction
Rules used in proof :  independent_isectElimination productElimination voidEquality voidElimination isect_memberEquality independent_functionElimination hypothesisEquality dependent_functionElimination lambdaEquality sqequalRule hypothesis because_Cache rename setElimination natural_numberEquality productEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.    Inj(\mBbbN{}n;\mBbbN{}n;compose-flips(L))



Date html generated: 2018_05_21-PM-00_42_04
Last ObjectModification: 2017_12_10-PM-03_41_14

Theory : list_1


Home Index