Nuprl Lemma : rotate-injection

[n:ℕ]. Inj(ℕn;ℕn;rot(n))


Proof




Definitions occuring in Statement :  rotate: rot(n) inject: Inj(A;B;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q rotate: rot(n) prop: nat: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  equal_wf int_seg_wf rotate_wf nat_wf eq_int_wf subtract_wf int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf intformless_wf int_formula_prop_le_lemma int_formula_prop_less_lemma decidable__lt lelt_wf assert_wf bnot_wf not_wf itermAdd_wf int_term_value_add_lemma bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution sqequalRule hypothesis extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality applyEquality lambdaEquality dependent_functionElimination axiomEquality because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality productElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality instantiate cumulativity independent_functionElimination impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  Inj(\mBbbN{}n;\mBbbN{}n;rot(n))



Date html generated: 2017_04_17-AM-08_08_10
Last ObjectModification: 2017_02_27-PM-04_35_55

Theory : list_1


Home Index