Nuprl Lemma : permutation-generators2

n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
     ∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} (P[f]  P[f (0, 1)]) supposing 1 < n
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} (P[f]  P[f rot(n)]))
     (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} P[f]))


Proof




Definitions occuring in Statement :  flip: (i, j) rotate: rot(n) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uimplies: supposing a compose: g subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) nat_plus: + uiff: uiff(P;Q) subtract: m
Lemmas referenced :  permutation-generators identity-injection int_seg_wf inject_wf funinv_wf2 nat_wf funinv-unique isect_wf less_than_wf all_wf compose-injections flip-injection false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf flip_wf member-less_than set_wf equal_wf squash_wf true_wf funinv-compose iff_weakening_equal flip_inverse rotate-injection rotate_wf decidable__equal_int subtype_base_sq int_subtype_base subtype_rel_sets subtype_rel_set subtype_rel_dep_function subtype_rel_self subtype_rel_wf int_seg_properties intformle_wf intformeq_wf int_formula_prop_le_lemma int_formula_prop_eq_lemma subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma le_wf fun_exp0_lemma primrec-wf2 inject-compose fun_exp_wf fun_exp_add_apply1 subtract-add-cancel fun_exp-injection rotate-inverse not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero funinv-funinv
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination natural_numberEquality setElimination rename dependent_set_memberEquality lambdaEquality because_Cache functionExtensionality applyEquality isect_memberFormation sqequalRule setEquality functionEquality independent_functionElimination cumulativity universeEquality addLevel hyp_replacement equalitySymmetry levelHypothesis equalityTransitivity independent_isectElimination independent_pairFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination imageMemberEquality baseClosed productElimination applyLambdaEquality instantiate addEquality minusEquality

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  \mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[f  o  (0,  1)])  supposing  1  <  n
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[f  o  rot(n)]))
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))



Date html generated: 2017_04_17-AM-08_22_14
Last ObjectModification: 2017_02_27-PM-04_45_54

Theory : list_1


Home Index