Nuprl Lemma : permutation-generators2
∀n:ℕ
  ∀[P:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)}  ⟶ ℙ]
    (P[λx.x]
    
⇒ ∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . (P[f] 
⇒ P[f o (0, 1)]) supposing 1 < n
    
⇒ (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . (P[f] 
⇒ P[f o rot(n)]))
    
⇒ (∀f:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} . P[f]))
Proof
Definitions occuring in Statement : 
flip: (i, j)
, 
rotate: rot(n)
, 
inject: Inj(A;B;f)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
subtract: n - m
Lemmas referenced : 
permutation-generators, 
identity-injection, 
int_seg_wf, 
inject_wf, 
funinv_wf2, 
nat_wf, 
funinv-unique, 
isect_wf, 
less_than_wf, 
all_wf, 
compose-injections, 
flip-injection, 
false_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
flip_wf, 
member-less_than, 
set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
funinv-compose, 
iff_weakening_equal, 
flip_inverse, 
rotate-injection, 
rotate_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
subtype_rel_sets, 
subtype_rel_set, 
subtype_rel_dep_function, 
subtype_rel_self, 
subtype_rel_wf, 
int_seg_properties, 
intformle_wf, 
intformeq_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_wf, 
fun_exp0_lemma, 
primrec-wf2, 
inject-compose, 
fun_exp_wf, 
fun_exp_add_apply1, 
subtract-add-cancel, 
fun_exp-injection, 
rotate-inverse, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
funinv-funinv
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaEquality, 
because_Cache, 
functionExtensionality, 
applyEquality, 
isect_memberFormation, 
sqequalRule, 
setEquality, 
functionEquality, 
independent_functionElimination, 
cumulativity, 
universeEquality, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
levelHypothesis, 
equalityTransitivity, 
independent_isectElimination, 
independent_pairFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyLambdaEquality, 
instantiate, 
addEquality, 
minusEquality
Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[P:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}    {}\mrightarrow{}  \mBbbP{}]
        (P[\mlambda{}x.x]
        {}\mRightarrow{}  \mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[f  o  (0,  1)])  supposing  1  <  n
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  (P[f]  {}\mRightarrow{}  P[f  o  rot(n)]))
        {}\mRightarrow{}  (\mforall{}f:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  .  P[f]))
Date html generated:
2017_04_17-AM-08_22_14
Last ObjectModification:
2017_02_27-PM-04_45_54
Theory : list_1
Home
Index