Nuprl Lemma : funinv-compose

[n:ℕ]. ∀[f,g:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ].  (inv(f g) (inv(g) inv(f)) ∈ {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} )


Proof




Definitions occuring in Statement :  funinv: inv(f) inject: Inj(A;B;f) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: prop: squash: T compose: g inject: Inj(A;B;f) all: x:A. B[x] subtype_rel: A ⊆B implies:  Q and: P ∧ Q label: ...$L... t guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  compose-injections int_seg_wf inject_wf nat_wf funinv_wf2 equal_wf squash_wf true_wf istype-universe funinv-property int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le le_wf less_than_wf intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma subtype_rel_self iff_weakening_equal subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis setElimination rename Error :inhabitedIsType,  sqequalRule Error :isect_memberEquality_alt,  axiomEquality Error :setIsType,  Error :functionIsType,  Error :universeIsType,  natural_numberEquality equalityTransitivity equalitySymmetry applyLambdaEquality imageMemberEquality baseClosed imageElimination Error :dependent_set_memberEquality_alt,  Error :functionExtensionality_alt,  dependent_functionElimination applyEquality Error :lambdaEquality_alt,  independent_functionElimination universeEquality productElimination unionElimination independent_isectElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation Error :productIsType,  instantiate cumulativity intEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].    (inv(f  o  g)  =  (inv(g)  o  inv(f)))



Date html generated: 2019_06_20-PM-01_17_42
Last ObjectModification: 2018_10_07-AM-00_37_00

Theory : int_2


Home Index