Nuprl Lemma : funinv-compose
∀[n:ℕ]. ∀[f,g:{f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} ].  (inv(f o g) = (inv(g) o inv(f)) ∈ {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} )
Proof
Definitions occuring in Statement : 
funinv: inv(f)
, 
inject: Inj(A;B;f)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
prop: ℙ
, 
squash: ↓T
, 
compose: f o g
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
label: ...$L... t
, 
guard: {T}
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
Lemmas referenced : 
compose-injections, 
int_seg_wf, 
inject_wf, 
nat_wf, 
funinv_wf2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
funinv-property, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
le_wf, 
less_than_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_rel_self, 
iff_weakening_equal, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
Error :inhabitedIsType, 
sqequalRule, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :setIsType, 
Error :functionIsType, 
Error :universeIsType, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :dependent_set_memberEquality_alt, 
Error :functionExtensionality_alt, 
dependent_functionElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
independent_functionElimination, 
universeEquality, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
Error :productIsType, 
instantiate, 
cumulativity, 
intEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\{f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n|  Inj(\mBbbN{}n;\mBbbN{}n;f)\}  ].    (inv(f  o  g)  =  (inv(g)  o  inv(f)))
Date html generated:
2019_06_20-PM-01_17_42
Last ObjectModification:
2018_10_07-AM-00_37_00
Theory : int_2
Home
Index