Nuprl Lemma : assert-list-deq
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[as,bs:A List].  uiff(↑(list-deq(eq) as bs);as = bs ∈ (A List))
Proof
Definitions occuring in Statement : 
list-deq: list-deq(eq)
, 
list: T List
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list-deq_wf, 
deq_wf, 
list_wf, 
assert_wf, 
assert_witness, 
equal_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
independent_pairFormation, 
isect_memberFormation, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
universeEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[as,bs:A  List].    uiff(\muparrow{}(list-deq(eq)  as  bs);as  =  bs)
Date html generated:
2017_04_14-AM-08_55_28
Last ObjectModification:
2017_02_27-PM-03_39_18
Theory : omega
Home
Index