Step
*
1
1
2
of Lemma
exact-eq-constraint-implies
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ||eqs[i]||
4. eqs[i][j] ≠ 1
5. exact-eq-constraint(eqs;i;j)
6. ineqs : ℤ List List
7. xs : ℤ List
8. ||xs|| = ||eqs[i]|| ∈ ℤ
9. 0 < ||xs||
10. (hd(xs) = 1 ∈ ℤ) ∧ (((eqs[i][j] * xs[j]) + eqs[i]\j ⋅ xs\j) = 0 ∈ ℤ)
⊢ xs[j] = eqs[i]\j ⋅ xs\j ∈ ℤ
BY
{ Subst' eqs[i][j] ~ -1 -1 }
1
.....equality.....
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ||eqs[i]||
4. eqs[i][j] ≠ 1
5. exact-eq-constraint(eqs;i;j)
6. ineqs : ℤ List List
7. xs : ℤ List
8. ||xs|| = ||eqs[i]|| ∈ ℤ
9. 0 < ||xs||
10. (hd(xs) = 1 ∈ ℤ) ∧ (((eqs[i][j] * xs[j]) + eqs[i]\j ⋅ xs\j) = 0 ∈ ℤ)
⊢ eqs[i][j] ~ -1
2
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ||eqs[i]||
4. eqs[i][j] ≠ 1
5. exact-eq-constraint(eqs;i;j)
6. ineqs : ℤ List List
7. xs : ℤ List
8. ||xs|| = ||eqs[i]|| ∈ ℤ
9. 0 < ||xs||
10. (hd(xs) = 1 ∈ ℤ) ∧ ((((-1) * xs[j]) + eqs[i]\j ⋅ xs\j) = 0 ∈ ℤ)
⊢ xs[j] = eqs[i]\j ⋅ xs\j ∈ ℤ
Latex:
Latex:
1. eqs : \mBbbZ{} List List
2. i : \mBbbN{}||eqs||
3. j : \mBbbN{}||eqs[i]||
4. eqs[i][j] \mneq{} 1
5. exact-eq-constraint(eqs;i;j)
6. ineqs : \mBbbZ{} List List
7. xs : \mBbbZ{} List
8. ||xs|| = ||eqs[i]||
9. 0 < ||xs||
10. (hd(xs) = 1) \mwedge{} (((eqs[i][j] * xs[j]) + eqs[i]\mbackslash{}j \mcdot{} xs\mbackslash{}j) = 0)
\mvdash{} xs[j] = eqs[i]\mbackslash{}j \mcdot{} xs\mbackslash{}j
By
Latex:
Subst' eqs[i][j] \msim{} -1 -1
Home
Index