Nuprl Lemma : exact-eq-constraint-implies
∀[eqs:ℤ List List]. ∀[i:ℕ||eqs||]. ∀[j:ℕ||eqs[i]||].
∀ineqs:ℤ List List. ∀xs:ℤ List.
(satisfies-integer-problem(eqs;ineqs;xs)
⇒ (xs[j] = if (eqs[i][j] =z 1) then -1 * eqs[i]\j ⋅ xs\j else eqs[i]\j ⋅ xs\j fi ∈ ℤ))
supposing exact-eq-constraint(eqs;i;j)
Proof
Definitions occuring in Statement :
exact-eq-constraint: exact-eq-constraint(eqs;i;j)
,
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
,
int-vec-mul: a * as
,
list-delete: as\i
,
integer-dot-product: as ⋅ bs
,
select: L[n]
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
minus: -n
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
,
and: P ∧ Q
,
l_all: (∀x∈L.P[x])
,
satisfies-integer-equality: xs ⋅ as =0
,
prop: ℙ
,
int_seg: {i..j-}
,
sq_stable: SqStable(P)
,
lelt: i ≤ j < k
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
cand: A c∧ B
,
guard: {T}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
top: Top
,
subtract: n - m
,
exact-eq-constraint: exact-eq-constraint(eqs;i;j)
,
less_than: a < b
,
true: True
,
nequal: a ≠ b ∈ T
Lemmas referenced :
satisfies-integer-problem_wf,
list_wf,
exact-eq-constraint_wf,
int_seg_wf,
length_wf,
select_wf,
sq_stable__le,
int-dot-select,
int_seg_subtype_nat,
false_wf,
less_than_transitivity1,
le_weakening,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_subtype_base,
int-dot-mul-left,
list-delete_wf,
subtract_wf,
integer-dot-product_wf,
add-associates,
minus-zero,
one-mul,
minus-one-mul-top,
add-zero,
zero-add,
add-swap,
add-commutes,
add-mul-special,
zero-mul,
absval_unfold,
lt_int_wf,
assert_of_lt_int,
top_wf,
less_than_wf,
equal-wf-T-base,
minus-one-mul
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
extract_by_obid,
isectElimination,
intEquality,
sqequalRule,
lambdaEquality,
axiomEquality,
because_Cache,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
setElimination,
rename,
independent_isectElimination,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
applyEquality,
independent_pairFormation,
unionElimination,
equalityElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
cumulativity,
voidElimination,
minusEquality,
addEquality,
multiplyEquality,
voidEquality,
lessCases,
sqequalAxiom
Latex:
\mforall{}[eqs:\mBbbZ{} List List]. \mforall{}[i:\mBbbN{}||eqs||]. \mforall{}[j:\mBbbN{}||eqs[i]||].
\mforall{}ineqs:\mBbbZ{} List List. \mforall{}xs:\mBbbZ{} List.
(satisfies-integer-problem(eqs;ineqs;xs)
{}\mRightarrow{} (xs[j] = if (eqs[i][j] =\msubz{} 1) then -1 * eqs[i]\mbackslash{}j \mcdot{} xs\mbackslash{}j else eqs[i]\mbackslash{}j \mcdot{} xs\mbackslash{}j fi ))
supposing exact-eq-constraint(eqs;i;j)
Date html generated:
2017_04_14-AM-09_04_59
Last ObjectModification:
2017_02_27-PM-03_45_03
Theory : omega
Home
Index