Nuprl Lemma : exact-eq-constraint-implies

[eqs:ℤ List List]. ∀[i:ℕ||eqs||]. ∀[j:ℕ||eqs[i]||].
  ∀ineqs:ℤ List List. ∀xs:ℤ List.
    (satisfies-integer-problem(eqs;ineqs;xs)
     (xs[j] if (eqs[i][j] =z 1) then -1 eqs[i]\j ⋅ xs\j else eqs[i]\j ⋅ xs\j fi  ∈ ℤ)) 
  supposing exact-eq-constraint(eqs;i;j)


Proof




Definitions occuring in Statement :  exact-eq-constraint: exact-eq-constraint(eqs;i;j) satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) int-vec-mul: as list-delete: as\i integer-dot-product: as ⋅ bs select: L[n] length: ||as|| list: List int_seg: {i..j-} ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) and: P ∧ Q l_all: (∀x∈L.P[x]) satisfies-integer-equality: xs ⋅ as =0 prop: int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A cand: c∧ B guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b top: Top subtract: m exact-eq-constraint: exact-eq-constraint(eqs;i;j) less_than: a < b true: True nequal: a ≠ b ∈ 
Lemmas referenced :  satisfies-integer-problem_wf list_wf exact-eq-constraint_wf int_seg_wf length_wf select_wf sq_stable__le int-dot-select int_seg_subtype_nat false_wf less_than_transitivity1 le_weakening eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base int-dot-mul-left list-delete_wf subtract_wf integer-dot-product_wf add-associates minus-zero one-mul minus-one-mul-top add-zero zero-add add-swap add-commutes add-mul-special zero-mul absval_unfold lt_int_wf assert_of_lt_int top_wf less_than_wf equal-wf-T-base minus-one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin dependent_functionElimination hypothesisEquality hypothesis extract_by_obid isectElimination intEquality sqequalRule lambdaEquality axiomEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality setElimination rename independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination applyEquality independent_pairFormation unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity voidElimination minusEquality addEquality multiplyEquality voidEquality lessCases sqequalAxiom

Latex:
\mforall{}[eqs:\mBbbZ{}  List  List].  \mforall{}[i:\mBbbN{}||eqs||].  \mforall{}[j:\mBbbN{}||eqs[i]||].
    \mforall{}ineqs:\mBbbZ{}  List  List.  \mforall{}xs:\mBbbZ{}  List.
        (satisfies-integer-problem(eqs;ineqs;xs)
        {}\mRightarrow{}  (xs[j]  =  if  (eqs[i][j]  =\msubz{}  1)  then  -1  *  eqs[i]\mbackslash{}j  \mcdot{}  xs\mbackslash{}j  else  eqs[i]\mbackslash{}j  \mcdot{}  xs\mbackslash{}j  fi  )) 
    supposing  exact-eq-constraint(eqs;i;j)



Date html generated: 2017_04_14-AM-09_04_59
Last ObjectModification: 2017_02_27-PM-03_45_03

Theory : omega


Home Index