Nuprl Lemma : int-dot-select

[as,bs:ℤ List]. ∀[i:ℕ].  as ⋅ bs (as[i] bs[i]) as\i ⋅ bs\i supposing i < ||as|| ∧ i < ||bs||


Proof




Definitions occuring in Statement :  list-delete: as\i integer-dot-product: as ⋅ bs select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q multiply: m add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q top: Top select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than: a < b bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  list-delete: as\i bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b cand: c∧ B
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf length_wf nat_wf list_wf equal-wf-base list_subtype_base int_subtype_base list-cases nil_wf length_of_nil_lemma int_dot_nil_left_lemma stuck-spread base_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf length_of_cons_lemma colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel equal-wf-T-base decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes subtract_wf not-ge-2 less-iff-le minus-minus add-swap cons_wf int_dot_cons_nil_lemma int_dot_cons_lemma le_int_wf bool_wf eqtt_to_assert assert_of_le_int lt_int_wf assert_of_lt_int top_wf integer-dot-product_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot not-lt-2 minus-zero le-add-cancel2 select_wf decidable__lt select-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom productEquality intEquality because_Cache equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality unionElimination voidEquality productElimination promote_hyp hypothesis_subsumption instantiate cumulativity addEquality applyLambdaEquality imageMemberEquality imageElimination dependent_set_memberEquality independent_pairFormation minusEquality equalityElimination lessCases multiplyEquality dependent_pairFormation

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}].    as  \mcdot{}  bs  \msim{}  (as[i]  *  bs[i])  +  as\mbackslash{}i  \mcdot{}  bs\mbackslash{}i  supposing  i  <  ||as||  \mwedge{}  i  <  ||bs||



Date html generated: 2017_04_14-AM-08_55_57
Last ObjectModification: 2017_02_27-PM-03_40_02

Theory : omega


Home Index