Step
*
4
1
2
1
1
of Lemma
gcd-reduce-eq-constraints_wf2
1. n : ℕ
2. LL : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
3. sat : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. u : ℤ
5. v : ℤ List
6. ||[u / v]|| = (n + 1) ∈ ℤ
7. Ls : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
8. ¬↑null(v)
9. L1 : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
10. [u / v] = L1 ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
⊢ if (1) < (|gcd-list(v)|)
then if u rem |gcd-list(v)|=0 then eval L' = eager-map(λx.(x ÷ |gcd-list(v)|);L1) in inl [L' / Ls] else (inr ⋅ )
else (inl [L1 / Ls]) ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List?
BY
{ Auto }
1
1. n : ℕ
2. LL : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
3. sat : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. u : ℤ
5. v : ℤ List
6. ||[u / v]|| = (n + 1) ∈ ℤ
7. Ls : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
8. ¬↑null(v)
9. L1 : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
10. [u / v] = L1 ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
11. 1 < |gcd-list(v)|
12. (u rem |gcd-list(v)|) = 0 ∈ ℤ
⊢ eager-map(λx.(x ÷ |gcd-list(v)|);L1) ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
Latex:
Latex:
1. n : \mBbbN{}
2. LL : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
3. sat : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
4. u : \mBbbZ{}
5. v : \mBbbZ{} List
6. ||[u / v]|| = (n + 1)
7. Ls : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
8. \mneg{}\muparrow{}null(v)
9. L1 : \{L:\mBbbZ{} List| ||L|| = (n + 1)\}
10. [u / v] = L1
\mvdash{} if (1) < (|gcd-list(v)|)
then if u rem |gcd-list(v)|=0
then eval L' = eager-map(\mlambda{}x.(x \mdiv{} |gcd-list(v)|);L1) in
inl [L' / Ls]
else (inr \mcdot{} )
else (inl [L1 / Ls]) \mmember{} \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List?
By
Latex:
Auto
Home
Index