Step
*
4
1
2
1
1
1
of Lemma
gcd-reduce-eq-constraints_wf2
1. n : ℕ
2. LL : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
3. sat : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. u : ℤ
5. v : ℤ List
6. ||[u / v]|| = (n + 1) ∈ ℤ
7. Ls : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
8. ¬↑null(v)
9. L1 : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
10. [u / v] = L1 ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
11. 1 < |gcd-list(v)|
12. (u rem |gcd-list(v)|) = 0 ∈ ℤ
⊢ eager-map(λx.(x ÷ |gcd-list(v)|);L1) ∈ {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
BY
{ (MemTypeCD THEN Auto THEN RWO "eager-map-is-map" 0 THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. LL : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
3. sat : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
4. u : \mBbbZ{}
5. v : \mBbbZ{} List
6. ||[u / v]|| = (n + 1)
7. Ls : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
8. \mneg{}\muparrow{}null(v)
9. L1 : \{L:\mBbbZ{} List| ||L|| = (n + 1)\}
10. [u / v] = L1
11. 1 < |gcd-list(v)|
12. (u rem |gcd-list(v)|) = 0
\mvdash{} eager-map(\mlambda{}x.(x \mdiv{} |gcd-list(v)|);L1) \mmember{} \{L:\mBbbZ{} List| ||L|| = (n + 1)\}
By
Latex:
(MemTypeCD THEN Auto THEN RWO "eager-map-is-map" 0 THEN Auto)
Home
Index