Nuprl Lemma : ipolynomial-term-cons-value
∀[m:iMonomial()]. ∀[p:iMonomial() List].
  ∀f:ℤ ⟶ ℤ
    (int_term_value(f;ipolynomial-term([m / p]))
    = (int_term_value(f;imonomial-term(m)) + int_term_value(f;ipolynomial-term(p)))
    ∈ ℤ)
Proof
Definitions occuring in Statement : 
ipolynomial-term: ipolynomial-term(p)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
int_term_value: int_term_value(f;t)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
equiv_int_terms: t1 ≡ t2
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
int_term_value: int_term_value(f;t)
, 
itermAdd: left "+" right
, 
int_term_ind: int_term_ind, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
Lemmas referenced : 
ipolynomial-term-cons, 
subtype_base_sq, 
int_subtype_base, 
int_term_value_wf, 
imonomial-term_wf, 
ipolynomial-term_wf, 
list_wf, 
iMonomial_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalRule, 
addEquality, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
because_Cache, 
functionEquality
Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
        (int\_term\_value(f;ipolynomial-term([m  /  p]))
        =  (int\_term\_value(f;imonomial-term(m))  +  int\_term\_value(f;ipolynomial-term(p))))
Date html generated:
2016_05_14-AM-07_01_00
Last ObjectModification:
2015_12_26-PM-01_11_44
Theory : omega
Home
Index