Nuprl Lemma : ipolynomial-term-cons-value

[m:iMonomial()]. ∀[p:iMonomial() List].
  ∀f:ℤ ⟶ ℤ
    (int_term_value(f;ipolynomial-term([m p]))
    (int_term_value(f;imonomial-term(m)) int_term_value(f;ipolynomial-term(p)))
    ∈ ℤ)


Proof




Definitions occuring in Statement :  ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() int_term_value: int_term_value(f;t) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] equiv_int_terms: t1 ≡ t2 uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} int_term_value: int_term_value(f;t) itermAdd: left "+" right int_term_ind: int_term_ind iMonomial: iMonomial() int_nzero: -o
Lemmas referenced :  ipolynomial-term-cons subtype_base_sq int_subtype_base int_term_value_wf imonomial-term_wf ipolynomial-term_wf list_wf iMonomial_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule addEquality productElimination independent_pairEquality setElimination rename because_Cache functionEquality

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
        (int\_term\_value(f;ipolynomial-term([m  /  p]))
        =  (int\_term\_value(f;imonomial-term(m))  +  int\_term\_value(f;ipolynomial-term(p))))



Date html generated: 2016_05_14-AM-07_01_00
Last ObjectModification: 2015_12_26-PM-01_11_44

Theory : omega


Home Index