Nuprl Lemma : itermAdd?_wf
∀[v:int_term()]. (itermAdd?(v) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
itermAdd?: itermAdd?(v), 
int_term: int_term(), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
itermConstant: "const", 
itermAdd?: itermAdd?(v), 
pi1: fst(t), 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
itermVar: vvar, 
itermAdd: left (+) right, 
itermSubtract: left (-) right, 
itermMultiply: left (*) right, 
itermMinus: "-"num
Lemmas referenced : 
int_term-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
bfalse_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
btrue_wf, 
int_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
promote_hyp, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis_subsumption, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation, 
voidElimination
Latex:
\mforall{}[v:int\_term()].  (itermAdd?(v)  \mmember{}  \mBbbB{})
Date html generated:
2017_04_14-AM-08_56_54
Last ObjectModification:
2017_02_27-PM-03_40_17
Theory : omega
Home
Index