Step
*
1
2
2
2
1
1
of Lemma
minus-poly-equiv
1. u1 : ℤ-o
2. u2 : {vs:ℤ List| sorted(vs)}
3. v : iMonomial() List
4. ∀i:ℕ||[<u1, u2> / v]||. ∀j:ℕi. imonomial-less([<u1, u2> / v][j];[<u1, u2> / v][i])
5. ∀i:ℕ||v||. ∀j:ℕi. imonomial-less(v[j];v[i])
6. ipolynomial-term(minus-poly(v)) ≡ "-"ipolynomial-term(v)
7. f : ℤ ⟶ ℤ
⊢ int_term_value(f;imonomial-term(<-u1, u2>) (+) "-"ipolynomial-term(v)) = int_term_value(f;"-"imonomial-term(<u1, u2>) \000C(+) ipolynomial-term(v)) ∈ ℤ
BY
{ (RepUR ``int_term_value`` 0 THEN Fold `int_term_value` 0 THEN RWO "imonomial-term-linear" 0 THEN Auto) }
Latex:
Latex:
1. u1 : \mBbbZ{}\msupminus{}\msupzero{}
2. u2 : \{vs:\mBbbZ{} List| sorted(vs)\}
3. v : iMonomial() List
4. \mforall{}i:\mBbbN{}||[<u1, u2> / v]||. \mforall{}j:\mBbbN{}i. imonomial-less([<u1, u2> / v][j];[<u1, u2> / v][i])
5. \mforall{}i:\mBbbN{}||v||. \mforall{}j:\mBbbN{}i. imonomial-less(v[j];v[i])
6. ipolynomial-term(minus-poly(v)) \mequiv{} "-"ipolynomial-term(v)
7. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
\mvdash{} int\_term\_value(f;imonomial-term(<-u1, u2>) (+) "-"ipolynomial-term(v)) = int\_term\_value(f;"-"imono\000Cmial-term(<u1, u2>) (+) ipolynomial-term(v))
By
Latex:
(RepUR ``int\_term\_value`` 0
THEN Fold `int\_term\_value` 0
THEN RWO "imonomial-term-linear" 0
THEN Auto)
Home
Index