Nuprl Lemma : mul-mono-poly_wf1

[m:iMonomial()]. ∀[p:iMonomial() List].  (mul-mono-poly(m;p) ∈ iMonomial() List)


Proof




Definitions occuring in Statement :  mul-mono-poly: mul-mono-poly(m;p) iMonomial: iMonomial() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mul-mono-poly: mul-mono-poly(m;p) so_lambda: so_lambda(x,y,z.t[x; y; z]) has-value: (a)↓ uimplies: supposing a so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf iMonomial_wf list_wf nil_wf value-type-has-value iMonomial-value-type mul-monomials_wf list-value-type cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality callbyvalueReduce independent_isectElimination hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].    (mul-mono-poly(m;p)  \mmember{}  iMonomial()  List)



Date html generated: 2016_05_14-AM-07_03_08
Last ObjectModification: 2015_12_26-PM-01_11_17

Theory : omega


Home Index