Nuprl Lemma : mul-monomials_wf
∀[m1,m2:iMonomial()].  (mul-monomials(m1;m2) ∈ iMonomial())
Proof
Definitions occuring in Statement : 
mul-monomials: mul-monomials(m1;m2)
, 
iMonomial: iMonomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iMonomial: iMonomial()
, 
mul-monomials: mul-monomials(m1;m2)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
list_wf, 
list-value-type, 
merge-int-accum_wf, 
merge-int-accum-sq, 
iMonomial_wf, 
int_entire_a, 
equal_wf, 
nequal_wf, 
merge-int_wf, 
subtype_rel_self, 
sorted_wf, 
merge-int-sorted
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
independent_pairEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality
Latex:
\mforall{}[m1,m2:iMonomial()].    (mul-monomials(m1;m2)  \mmember{}  iMonomial())
Date html generated:
2017_09_29-PM-05_53_13
Last ObjectModification:
2017_07_26-PM-01_42_44
Theory : omega
Home
Index