Nuprl Lemma : nonneg-monomial_wf
∀[m:iMonomial()]. (nonneg-monomial(m) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
nonneg-monomial: nonneg-monomial(m)
, 
iMonomial: iMonomial()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nonneg-monomial: nonneg-monomial(m)
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
le_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_le_int, 
even-int-list_wf, 
bfalse_wf, 
iMonomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
Error :universeIsType
Latex:
\mforall{}[m:iMonomial()].  (nonneg-monomial(m)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-PM-00_45_51
Last ObjectModification:
2019_04_08-PM-01_59_11
Theory : omega
Home
Index