Nuprl Lemma : even-int-list_wf
∀[L:ℤ List]. (even-int-list(L) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
even-int-list: even-int-list(L), 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
and: P ∧ Q, 
ge: i ≥ j , 
le: A ≤ B, 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
sq_stable: SqStable(P), 
cons: [a / b], 
even-int-list: even-int-list(L), 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
btrue: tt, 
band: p ∧b q
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__le, 
istype-false, 
not-le-2, 
less-iff-le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
zero-add, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
le-add-cancel-alt, 
istype-le, 
subtype_rel_self, 
int_seg_properties, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
le_wf, 
istype-int, 
le_reflexive, 
length_wf, 
list_wf, 
not-equal-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
istype-nat, 
list-cases, 
product_subtype_list, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
testxxx_lemma, 
btrue_wf, 
null_cons_lemma, 
reduce_tl_cons_lemma, 
reduce_hd_cons_lemma, 
bfalse_wf, 
eq_int_wf, 
bool_cases, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
assert_of_eq_int, 
length_of_cons_lemma, 
two-mul, 
mul-distributes-right, 
one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
because_Cache, 
unionElimination, 
applyEquality, 
instantiate, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
minusEquality, 
Error :isect_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
intEquality, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
cumulativity
Latex:
\mforall{}[L:\mBbbZ{}  List].  (even-int-list(L)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-PM-00_45_45
Last ObjectModification:
2019_04_08-PM-01_57_07
Theory : omega
Home
Index