Nuprl Lemma : num-eq-constraints_wf
∀[p:IntConstraints]. (num-eq-constraints(p) ∈ ℕ)
Proof
Definitions occuring in Statement : 
num-eq-constraints: num-eq-constraints(p)
, 
int-constraint-problem: IntConstraints
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-constraint-problem: IntConstraints
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
num-eq-constraints: num-eq-constraints(p)
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
int-constraint-problem_wf, 
length_wf_nat, 
list_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
imageElimination, 
productElimination, 
isectElimination, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation
Latex:
\mforall{}[p:IntConstraints].  (num-eq-constraints(p)  \mmember{}  \mBbbN{})
Date html generated:
2017_04_14-AM-09_10_41
Last ObjectModification:
2017_02_27-PM-03_47_41
Theory : omega
Home
Index