Nuprl Lemma : num-eq-constraints_wf

[p:IntConstraints]. (num-eq-constraints(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  num-eq-constraints: num-eq-constraints(p) int-constraint-problem: IntConstraints nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) num-eq-constraints: num-eq-constraints(p) pi1: fst(t) subtype_rel: A ⊆B uimplies: supposing a nat: prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q
Lemmas referenced :  int-constraint-problem_wf length_wf_nat list_wf equal-wf-base-T list_subtype_base int_subtype_base false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid imageElimination productElimination isectElimination setEquality intEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality independent_isectElimination addEquality setElimination rename natural_numberEquality dependent_set_memberEquality independent_pairFormation lambdaFormation

Latex:
\mforall{}[p:IntConstraints].  (num-eq-constraints(p)  \mmember{}  \mBbbN{})



Date html generated: 2017_04_14-AM-09_10_41
Last ObjectModification: 2017_02_27-PM-03_47_41

Theory : omega


Home Index