Step
*
1
1
3
of Lemma
satisfiable-exact-reduce-constraints
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ+||eqs[i]||
4. exact-eq-constraint(eqs;i;j)
5. ineqs : ℤ List List
6. xs : ℤ List
7. satisfies-integer-problem(eqs;ineqs;xs)
8. (∀e∈eqs.||e|| = ||xs|| ∈ ℤ)
9. (∀e∈ineqs.||e|| = ||xs|| ∈ ℤ)
10. ||eqs[i]|| ~ ||xs||
11. eqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
12. ineqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
13. 1 ≤ j < ||xs||
14. 0 < ||xs\j||
15. hd(xs\j) = hd(xs) ∈ ℤ
16. (∀as∈eqs.xs ⋅ as =0)
17. ∀i:ℕ||ineqs||. xs ⋅ ineqs[i] ≥0
18. i@0 : ℕ||ineqs||
19. 0 < ||xs|| ∧ (hd(xs) = 1 ∈ ℤ) ∧ (ineqs[i@0] ⋅ xs ≥ 0 )
20. ||xs|| = ||ineqs[i@0]|| ∈ ℤ
⊢ ||xs\j|| = ||-(eqs[i][j] * ineqs[i@0][j]) * eqs[i]\j + ineqs[i@0]\j|| ∈ ℤ
BY
{ TACTIC:(RWW "length-int-vec-add" 0 THEN Auto) }
1
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ+||eqs[i]||
4. exact-eq-constraint(eqs;i;j)
5. ineqs : ℤ List List
6. xs : ℤ List
7. satisfies-integer-problem(eqs;ineqs;xs)
8. (∀e∈eqs.||e|| = ||xs|| ∈ ℤ)
9. (∀e∈ineqs.||e|| = ||xs|| ∈ ℤ)
10. ||eqs[i]|| ~ ||xs||
11. eqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
12. ineqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
13. 1 ≤ j
14. j < ||xs||
15. 0 < ||xs\j||
16. hd(xs\j) = hd(xs) ∈ ℤ
17. (∀as∈eqs.xs ⋅ as =0)
18. ∀i:ℕ||ineqs||. xs ⋅ ineqs[i] ≥0
19. i@0 : ℕ||ineqs||
20. 0 < ||xs||
21. hd(xs) = 1 ∈ ℤ
22. ineqs[i@0] ⋅ xs ≥ 0
23. ||xs|| = ||ineqs[i@0]|| ∈ ℤ
⊢ ||-(eqs[i][j] * ineqs[i@0][j]) * eqs[i]\j|| = ||ineqs[i@0]\j|| ∈ ℤ
2
1. eqs : ℤ List List
2. i : ℕ||eqs||
3. j : ℕ+||eqs[i]||
4. exact-eq-constraint(eqs;i;j)
5. ineqs : ℤ List List
6. xs : ℤ List
7. satisfies-integer-problem(eqs;ineqs;xs)
8. (∀e∈eqs.||e|| = ||xs|| ∈ ℤ)
9. (∀e∈ineqs.||e|| = ||xs|| ∈ ℤ)
10. ||eqs[i]|| ~ ||xs||
11. eqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
12. ineqs ∈ {l:ℤ List| ||l|| = ||eqs[i]|| ∈ ℤ} List
13. 1 ≤ j
14. j < ||xs||
15. 0 < ||xs\j||
16. hd(xs\j) = hd(xs) ∈ ℤ
17. (∀as∈eqs.xs ⋅ as =0)
18. ∀i:ℕ||ineqs||. xs ⋅ ineqs[i] ≥0
19. i@0 : ℕ||ineqs||
20. 0 < ||xs||
21. hd(xs) = 1 ∈ ℤ
22. ineqs[i@0] ⋅ xs ≥ 0
23. ||xs|| = ||ineqs[i@0]|| ∈ ℤ
⊢ ||xs\j|| = ||ineqs[i@0]\j|| ∈ ℤ
Latex:
Latex:
1. eqs : \mBbbZ{} List List
2. i : \mBbbN{}||eqs||
3. j : \mBbbN{}\msupplus{}||eqs[i]||
4. exact-eq-constraint(eqs;i;j)
5. ineqs : \mBbbZ{} List List
6. xs : \mBbbZ{} List
7. satisfies-integer-problem(eqs;ineqs;xs)
8. (\mforall{}e\mmember{}eqs.||e|| = ||xs||)
9. (\mforall{}e\mmember{}ineqs.||e|| = ||xs||)
10. ||eqs[i]|| \msim{} ||xs||
11. eqs \mmember{} \{l:\mBbbZ{} List| ||l|| = ||eqs[i]||\} List
12. ineqs \mmember{} \{l:\mBbbZ{} List| ||l|| = ||eqs[i]||\} List
13. 1 \mleq{} j < ||xs||
14. 0 < ||xs\mbackslash{}j||
15. hd(xs\mbackslash{}j) = hd(xs)
16. (\mforall{}as\mmember{}eqs.xs \mcdot{} as =0)
17. \mforall{}i:\mBbbN{}||ineqs||. xs \mcdot{} ineqs[i] \mgeq{}0
18. i@0 : \mBbbN{}||ineqs||
19. 0 < ||xs|| \mwedge{} (hd(xs) = 1) \mwedge{} (ineqs[i@0] \mcdot{} xs \mgeq{} 0 )
20. ||xs|| = ||ineqs[i@0]||
\mvdash{} ||xs\mbackslash{}j|| = ||-(eqs[i][j] * ineqs[i@0][j]) * eqs[i]\mbackslash{}j + ineqs[i@0]\mbackslash{}j||
By
Latex:
TACTIC:(RWW "length-int-vec-add" 0 THEN Auto)
Home
Index