Nuprl Lemma : satisfiable-exact-reduce-constraints

eqs:ℤ List List. ∀i:ℕ||eqs||. ∀j:ℕ+||eqs[i]||.
  ∀ineqs:ℤ List List
    (satisfiable(eqs;ineqs)
     satisfiable(exact-reduce-constraints(eqs[i];j;eqs);exact-reduce-constraints(eqs[i];j;ineqs))) 
  supposing exact-eq-constraint(eqs;i;j)


Proof




Definitions occuring in Statement :  exact-reduce-constraints: exact-reduce-constraints(w;j;L) exact-eq-constraint: exact-eq-constraint(eqs;i;j) satisfiable-integer-problem: satisfiable(eqs;ineqs) select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T exact-eq-constraint: exact-eq-constraint(eqs;i;j) implies:  Q satisfiable-integer-problem: satisfiable(eqs;ineqs) exists: x:A. B[x] uall: [x:A]. B[x] guard: {T} and: P ∧ Q nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) prop: l_all: (∀x∈L.P[x]) cons: [a b] list-delete: as\i so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) satisfies-integer-equality: xs ⋅ as =0 satisfies-integer-inequality: xs ⋅ as ≥0 cand: c∧ B eq_int: (i =z j)
Lemmas referenced :  satisfies-integer-problem-length subtype_base_sq nat_wf set_subtype_base le_wf istype-int int_subtype_base decidable__le length_wf select_wf list_wf istype-false not-le-2 sq_stable__le less-iff-le condition-implies-le minus-add istype-void minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-swap le-add-cancel istype-le list-set-type2 equal-wf-base satisfiable-integer-problem_wf exact-eq-constraint_wf istype-less_than int_seg_wf int_seg_properties less_than_wf squash_wf true_wf length-list-delete int_seg_subtype_nat subtype_rel_self iff_weakening_equal decidable__lt subtract_wf not-lt-2 minus-minus list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma reduce_hd_cons_lemma spread_cons_lemma lt_int_wf eqtt_to_assert assert_of_lt_int istype-top less_than_transitivity1 less_than_irreflexivity eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot iff_weakening_uiff assert_wf list-delete_wf satisfies-integer-problem_wf exact-reduce-constraints_wf list_subtype_base select-map subtype_rel_list top_wf length_wf_nat exact-reduce-constraints-sqequal length-map equal_wf istype-universe length-int-vec-add int-vec-mul_wf le_weakening length-int-vec-mul int-dot-reduce-dim exact-eq-constraint-implies absval_cases integer-dot-product_wf int-dot-mul-left one-mul int-vec-mul-mul mul-swap mul-commutes int-vec-add_wf ge_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution axiomEquality hypothesis thin rename productElimination extract_by_obid isectElimination hypothesisEquality independent_isectElimination instantiate cumulativity intEquality Error :lambdaEquality_alt,  closedConclusion natural_numberEquality setElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination because_Cache imageMemberEquality baseClosed imageElimination addEquality applyEquality Error :isect_memberEquality_alt,  minusEquality Error :dependent_set_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :universeIsType,  Error :productIsType,  setEquality universeEquality promote_hyp hypothesis_subsumption equalityElimination lessCases axiomSqEquality Error :isectIsTypeImplies,  Error :dependent_pairFormation_alt,  Error :equalityIsType4,  baseApply Error :equalityIsType1,  Error :setIsType,  multiplyEquality hyp_replacement

Latex:
\mforall{}eqs:\mBbbZ{}  List  List.  \mforall{}i:\mBbbN{}||eqs||.  \mforall{}j:\mBbbN{}\msupplus{}||eqs[i]||.
    \mforall{}ineqs:\mBbbZ{}  List  List
        (satisfiable(eqs;ineqs)
        {}\mRightarrow{}  satisfiable(exact-reduce-constraints(eqs[i];j;eqs);
                                      exact-reduce-constraints(eqs[i];j;ineqs))) 
    supposing  exact-eq-constraint(eqs;i;j)



Date html generated: 2019_06_20-PM-00_47_57
Last ObjectModification: 2018_10_18-PM-01_20_39

Theory : omega


Home Index