Nuprl Lemma : satisfiable-exact-reduce-constraints
∀eqs:ℤ List List. ∀i:ℕ||eqs||. ∀j:ℕ+||eqs[i]||.
  ∀ineqs:ℤ List List
    (satisfiable(eqs;ineqs)
    ⇒ satisfiable(exact-reduce-constraints(eqs[i];j;eqs);exact-reduce-constraints(eqs[i];j;ineqs))) 
  supposing exact-eq-constraint(eqs;i;j)
Proof
Definitions occuring in Statement : 
exact-reduce-constraints: exact-reduce-constraints(w;j;L), 
exact-eq-constraint: exact-eq-constraint(eqs;i;j), 
satisfiable-integer-problem: satisfiable(eqs;ineqs), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
exact-eq-constraint: exact-eq-constraint(eqs;i;j), 
implies: P ⇒ Q, 
satisfiable-integer-problem: satisfiable(eqs;ineqs), 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
guard: {T}, 
and: P ∧ Q, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
sq_type: SQType(T), 
prop: ℙ, 
l_all: (∀x∈L.P[x]), 
cons: [a / b], 
list-delete: as\i, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
less_than: a < b, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs), 
satisfies-integer-equality: xs ⋅ as =0, 
satisfies-integer-inequality: xs ⋅ as ≥0, 
cand: A c∧ B, 
eq_int: (i =z j)
Lemmas referenced : 
satisfies-integer-problem-length, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
decidable__le, 
length_wf, 
select_wf, 
list_wf, 
istype-false, 
not-le-2, 
sq_stable__le, 
less-iff-le, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-swap, 
le-add-cancel, 
istype-le, 
list-set-type2, 
equal-wf-base, 
satisfiable-integer-problem_wf, 
exact-eq-constraint_wf, 
istype-less_than, 
int_seg_wf, 
int_seg_properties, 
less_than_wf, 
squash_wf, 
true_wf, 
length-list-delete, 
int_seg_subtype_nat, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__lt, 
subtract_wf, 
not-lt-2, 
minus-minus, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
spread_cons_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
less_than_transitivity1, 
less_than_irreflexivity, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
list-delete_wf, 
satisfies-integer-problem_wf, 
exact-reduce-constraints_wf, 
list_subtype_base, 
select-map, 
subtype_rel_list, 
top_wf, 
length_wf_nat, 
exact-reduce-constraints-sqequal, 
length-map, 
equal_wf, 
istype-universe, 
length-int-vec-add, 
int-vec-mul_wf, 
le_weakening, 
length-int-vec-mul, 
int-dot-reduce-dim, 
exact-eq-constraint-implies, 
absval_cases, 
integer-dot-product_wf, 
int-dot-mul-left, 
one-mul, 
int-vec-mul-mul, 
mul-swap, 
mul-commutes, 
int-vec-add_wf, 
ge_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
instantiate, 
cumulativity, 
intEquality, 
Error :lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
applyEquality, 
Error :isect_memberEquality_alt, 
minusEquality, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :productIsType, 
setEquality, 
universeEquality, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
baseApply, 
Error :equalityIsType1, 
Error :setIsType, 
multiplyEquality, 
hyp_replacement
Latex:
\mforall{}eqs:\mBbbZ{}  List  List.  \mforall{}i:\mBbbN{}||eqs||.  \mforall{}j:\mBbbN{}\msupplus{}||eqs[i]||.
    \mforall{}ineqs:\mBbbZ{}  List  List
        (satisfiable(eqs;ineqs)
        {}\mRightarrow{}  satisfiable(exact-reduce-constraints(eqs[i];j;eqs);
                                      exact-reduce-constraints(eqs[i];j;ineqs))) 
    supposing  exact-eq-constraint(eqs;i;j)
Date html generated:
2019_06_20-PM-00_47_57
Last ObjectModification:
2018_10_18-PM-01_20_39
Theory : omega
Home
Index