Nuprl Lemma : int-dot-reduce-dim

[as,bs:ℤ List]. ∀[i:ℕ].
  ∀[cs:ℤ List]. (as ⋅ bs as[i] cs as\i ⋅ bs\i) supposing ((bs[i] cs ⋅ bs\i ∈ ℤand (||cs|| (||as|| 1) ∈ ℤ))\000C 
  supposing i < ||as|| ∧ i < ||bs||


Proof




Definitions occuring in Statement :  int-vec-add: as bs int-vec-mul: as list-delete: as\i integer-dot-product: as ⋅ bs select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q subtract: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: nat: sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B top: Top true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int-dot-select subtype_base_sq int_subtype_base equal_wf select_wf sq_stable__le integer-dot-product_wf list-delete_wf equal-wf-base list_subtype_base list_wf less_than_wf length_wf nat_wf int-vec-mul_wf squash_wf true_wf length-int-vec-mul length-list-delete iff_weakening_equal int-dot-mul-left int-dot-add-left
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination instantiate cumulativity intEquality sqequalRule because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom setElimination rename natural_numberEquality imageMemberEquality baseClosed imageElimination isect_memberEquality baseApply closedConclusion applyEquality productEquality lambdaEquality voidElimination voidEquality universeEquality addEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}].
    \mforall{}[cs:\mBbbZ{}  List]
        (as  \mcdot{}  bs  \msim{}  as[i]  *  cs  +  as\mbackslash{}i  \mcdot{}  bs\mbackslash{}i)  supposing  ((bs[i]  =  cs  \mcdot{}  bs\mbackslash{}i)  and  (||cs||  =  (||as||  -  1)))\000C 
    supposing  i  <  ||as||  \mwedge{}  i  <  ||bs||



Date html generated: 2017_04_14-AM-08_55_59
Last ObjectModification: 2017_02_27-PM-03_39_44

Theory : omega


Home Index