Nuprl Lemma : int-dot-reduce-dim
∀[as,bs:ℤ List]. ∀[i:ℕ].
  ∀[cs:ℤ List]. (as ⋅ bs ~ as[i] * cs + as\i ⋅ bs\i) supposing ((bs[i] = cs ⋅ bs\i ∈ ℤ) and (||cs|| = (||as|| - 1) ∈ ℤ))\000C 
  supposing i < ||as|| ∧ i < ||bs||
Proof
Definitions occuring in Statement : 
int-vec-add: as + bs
, 
int-vec-mul: a * as
, 
list-delete: as\i
, 
integer-dot-product: as ⋅ bs
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
int-dot-select, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
select_wf, 
sq_stable__le, 
integer-dot-product_wf, 
list-delete_wf, 
equal-wf-base, 
list_subtype_base, 
list_wf, 
less_than_wf, 
length_wf, 
nat_wf, 
int-vec-mul_wf, 
squash_wf, 
true_wf, 
length-int-vec-mul, 
length-list-delete, 
iff_weakening_equal, 
int-dot-mul-left, 
int-dot-add-left
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
instantiate, 
cumulativity, 
intEquality, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
productEquality, 
lambdaEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
addEquality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}].
    \mforall{}[cs:\mBbbZ{}  List]
        (as  \mcdot{}  bs  \msim{}  as[i]  *  cs  +  as\mbackslash{}i  \mcdot{}  bs\mbackslash{}i)  supposing  ((bs[i]  =  cs  \mcdot{}  bs\mbackslash{}i)  and  (||cs||  =  (||as||  -  1)))\000C 
    supposing  i  <  ||as||  \mwedge{}  i  <  ||bs||
Date html generated:
2017_04_14-AM-08_55_59
Last ObjectModification:
2017_02_27-PM-03_39_44
Theory : omega
Home
Index