Step
*
1
1
1
of Lemma
satisfiable-pcs-to-integer-problem
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : ℤ ⟶ ℤ
4. (∀p∈X1.int_term_value(f;ipolynomial-term(p)) = 0 ∈ ℤ)
5. (∀p∈X2.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. v : ℤ List List
7. rev(pcs-mon-vars(<X1, X2>)) = v ∈ (ℤ List List)
8. 0 < ||v||
9. hd(v) = [] ∈ (ℤ List)
10. no_repeats(ℤ List;v)
11. p : iPolynomial()
12. (p ∈ X1) ∨ (p ∈ X2)
13. i : ℕ||p||
⊢ (snd(p[i]) ∈ v)
BY
{ (RevHypSubst' (-7) 0 THEN RWW "member-reverse member-pcs-mon-vars" 0 THEN Auto) }
1
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : ℤ ⟶ ℤ
4. (∀p∈X1.int_term_value(f;ipolynomial-term(p)) = 0 ∈ ℤ)
5. (∀p∈X2.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. v : ℤ List List
7. rev(pcs-mon-vars(<X1, X2>)) = v ∈ (ℤ List List)
8. 0 < ||v||
9. hd(v) = [] ∈ (ℤ List)
10. no_repeats(ℤ List;v)
11. p : iPolynomial()
12. (p ∈ X1) ∨ (p ∈ X2)
13. i : ℕ||p||
⊢ ((snd(p[i])) = [] ∈ (ℤ List))
∨ (∃p1∈fst(<X1, X2>). (∃m∈p1. (snd(p[i])) = (snd(m)) ∈ (ℤ List)))
∨ (∃p1∈snd(<X1, X2>). (∃m∈p1. (snd(p[i])) = (snd(m)) ∈ (ℤ List)))
Latex:
Latex:
1. X1 : iPolynomial() List
2. X2 : iPolynomial() List
3. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
4. (\mforall{}p\mmember{}X1.int\_term\_value(f;ipolynomial-term(p)) = 0)
5. (\mforall{}p\mmember{}X2.0 \mleq{} int\_term\_value(f;ipolynomial-term(p)))
6. v : \mBbbZ{} List List
7. rev(pcs-mon-vars(<X1, X2>)) = v
8. 0 < ||v||
9. hd(v) = []
10. no\_repeats(\mBbbZ{} List;v)
11. p : iPolynomial()
12. (p \mmember{} X1) \mvee{} (p \mmember{} X2)
13. i : \mBbbN{}||p||
\mvdash{} (snd(p[i]) \mmember{} v)
By
Latex:
(RevHypSubst' (-7) 0 THEN RWW "member-reverse member-pcs-mon-vars" 0 THEN Auto)
Home
Index