Nuprl Lemma : satisfiable-pcs-to-integer-problem
∀X:polynomial-constraints()
  (satisfiable_polynomial_constraints(X) 
⇒ satisfiable(fst(pcs-to-integer-problem(X));snd(pcs-to-integer-problem(X))))
Proof
Definitions occuring in Statement : 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
pcs-to-integer-problem: pcs-to-integer-problem(X)
, 
satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X)
, 
polynomial-constraints: polynomial-constraints()
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X)
, 
exists: ∃x:A. B[x]
, 
pcs-to-integer-problem: pcs-to-integer-problem(X)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
polynomial-constraints: polynomial-constraints()
, 
satisfies-poly-constraints: satisfies-poly-constraints(f;X)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
has-value: (a)↓
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
or: P ∨ Q
, 
squash: ↓T
, 
iPolynomial: iPolynomial()
, 
cand: A c∧ B
, 
l_all: (∀x∈L.P[x])
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
iMonomial: iMonomial()
, 
pcs-mon-vars: pcs-mon-vars(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_member: (x ∈ l)
, 
l_exists: (∃x∈L. P[x])
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than: a < b
, 
int_nzero: ℤ-o
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
, 
top: Top
, 
satisfies-integer-equality: xs ⋅ as =0
, 
linearization: linearization(p;L)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
false: False
, 
cons: [a / b]
, 
not: ¬A
, 
satisfies-integer-inequality: xs ⋅ as ≥0
Lemmas referenced : 
hd-rev-pcs-mon-vars, 
reverse_wf, 
list_wf, 
pcs-mon-vars_wf, 
equal_wf, 
satisfiable_polynomial_constraints_wf, 
polynomial-constraints_wf, 
value-type-has-value, 
list-value-type, 
iPolynomial_wf, 
linearization_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
less_than_wf, 
length_wf, 
map_wf, 
list-valueall-type, 
int-valueall-type, 
eager-map-is-map, 
evalall-reduce, 
subtype_base_sq, 
no_repeats_reverse, 
no_repeats-pcs-mon-vars, 
or_wf, 
l_member_wf, 
squash_wf, 
true_wf, 
int_term_value_wf, 
ipolynomial-term_wf, 
linearization-value, 
int_seg_wf, 
iMonomial_wf, 
iff_weakening_equal, 
member-pcs-mon-vars, 
select_wf, 
sq_stable__le, 
member-reverse, 
equal-wf-T-base, 
l_exists_wf, 
pi1_wf, 
pi2_wf, 
lelt_wf, 
set_subtype_base, 
product_subtype_base, 
list_accum_wf, 
satisfies-integer-problem_wf, 
select-map, 
subtype_rel_list, 
top_wf, 
map-length, 
length_wf_nat, 
and_wf, 
nat_wf, 
map_length, 
poly-coeff-of_wf, 
non_neg_length, 
le_wf, 
subtract_wf, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
zero-add, 
one-mul, 
int_seg_properties, 
nat_properties, 
list-cases, 
map_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
map_cons_lemma, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
null_nil_lemma, 
btrue_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
length-map, 
select_member, 
ge_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
intEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
productEquality, 
natural_numberEquality, 
callbyvalueReduce, 
instantiate, 
cumulativity, 
independent_pairEquality, 
isect_memberFormation, 
functionEquality, 
imageElimination, 
universeEquality, 
functionExtensionality, 
independent_pairFormation, 
imageMemberEquality, 
axiomEquality, 
addLevel, 
inrFormation, 
unionElimination, 
inlFormation, 
dependent_pairFormation, 
dependent_set_memberEquality, 
multiplyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis, 
sqequalIntensionalEquality, 
promote_hyp, 
addEquality, 
hypothesis_subsumption
Latex:
\mforall{}X:polynomial-constraints()
    (satisfiable\_polynomial\_constraints(X)
    {}\mRightarrow{}  satisfiable(fst(pcs-to-integer-problem(X));snd(pcs-to-integer-problem(X))))
Date html generated:
2017_04_14-AM-09_04_51
Last ObjectModification:
2017_02_27-PM-03_45_39
Theory : omega
Home
Index