Nuprl Lemma : satisfiable-pcs-to-integer-problem

X:polynomial-constraints()
  (satisfiable_polynomial_constraints(X)  satisfiable(fst(pcs-to-integer-problem(X));snd(pcs-to-integer-problem(X))))


Proof




Definitions occuring in Statement :  satisfiable-integer-problem: satisfiable(eqs;ineqs) pcs-to-integer-problem: pcs-to-integer-problem(X) satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) polynomial-constraints: polynomial-constraints() pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) exists: x:A. B[x] pcs-to-integer-problem: pcs-to-integer-problem(X) member: t ∈ T uall: [x:A]. B[x] prop: uimplies: supposing a polynomial-constraints: polynomial-constraints() satisfies-poly-constraints: satisfies-poly-constraints(f;X) and: P ∧ Q subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) has-value: (a)↓ sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q squash: T iPolynomial: iPolynomial() cand: c∧ B l_all: (∀x∈L.P[x]) true: True iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k iMonomial: iMonomial() pcs-mon-vars: pcs-mon-vars(X) so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) l_exists: (∃x∈L. P[x]) nat: le: A ≤ B less_than: a < b int_nzero: -o satisfiable-integer-problem: satisfiable(eqs;ineqs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) top: Top satisfies-integer-equality: xs ⋅ as =0 linearization: linearization(p;L) subtract: m less_than': less_than'(a;b) false: False cons: [a b] not: ¬A satisfies-integer-inequality: xs ⋅ as ≥0
Lemmas referenced :  hd-rev-pcs-mon-vars reverse_wf list_wf pcs-mon-vars_wf equal_wf satisfiable_polynomial_constraints_wf polynomial-constraints_wf value-type-has-value list-value-type iPolynomial_wf linearization_wf equal-wf-base list_subtype_base int_subtype_base less_than_wf length_wf map_wf list-valueall-type int-valueall-type eager-map-is-map evalall-reduce subtype_base_sq no_repeats_reverse no_repeats-pcs-mon-vars or_wf l_member_wf squash_wf true_wf int_term_value_wf ipolynomial-term_wf linearization-value int_seg_wf iMonomial_wf iff_weakening_equal member-pcs-mon-vars select_wf sq_stable__le member-reverse equal-wf-T-base l_exists_wf pi1_wf pi2_wf lelt_wf set_subtype_base product_subtype_base list_accum_wf satisfies-integer-problem_wf select-map subtype_rel_list top_wf map-length length_wf_nat and_wf nat_wf map_length poly-coeff-of_wf non_neg_length le_wf subtract_wf minus-one-mul add-swap add-commutes add-associates add-mul-special two-mul mul-distributes-right zero-mul zero-add one-mul int_seg_properties nat_properties list-cases map_nil_lemma length_of_nil_lemma product_subtype_list map_cons_lemma length_of_cons_lemma reduce_hd_cons_lemma list_accum_nil_lemma list_accum_cons_lemma null_nil_lemma btrue_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse length-map select_member ge_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination intEquality hypothesis equalityTransitivity equalitySymmetry independent_functionElimination independent_isectElimination sqequalRule lambdaEquality applyEquality setElimination rename setEquality baseApply closedConclusion baseClosed because_Cache productEquality natural_numberEquality callbyvalueReduce instantiate cumulativity independent_pairEquality isect_memberFormation functionEquality imageElimination universeEquality functionExtensionality independent_pairFormation imageMemberEquality axiomEquality addLevel inrFormation unionElimination inlFormation dependent_pairFormation dependent_set_memberEquality multiplyEquality isect_memberEquality voidElimination voidEquality hyp_replacement applyLambdaEquality levelHypothesis sqequalIntensionalEquality promote_hyp addEquality hypothesis_subsumption

Latex:
\mforall{}X:polynomial-constraints()
    (satisfiable\_polynomial\_constraints(X)
    {}\mRightarrow{}  satisfiable(fst(pcs-to-integer-problem(X));snd(pcs-to-integer-problem(X))))



Date html generated: 2017_04_14-AM-09_04_51
Last ObjectModification: 2017_02_27-PM-03_45_39

Theory : omega


Home Index