Nuprl Lemma : no_repeats-pcs-mon-vars

X:polynomial-constraints(). no_repeats(ℤ List;pcs-mon-vars(X))


Proof




Definitions occuring in Statement :  pcs-mon-vars: pcs-mon-vars(X) polynomial-constraints: polynomial-constraints() no_repeats: no_repeats(T;l) list: List all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] polynomial-constraints: polynomial-constraints() pcs-mon-vars: pcs-mon-vars(X) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a iPolynomial: iPolynomial() so_lambda: λ2x.t[x] int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] iMonomial: iMonomial() prop: top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  no_repeats-polynomial-mon-vars list_accum_cons_lemma list_accum_nil_lemma no_repeats_wf list_induction polynomial-constraints_wf no_repeats_singleton polynomial-mon-vars_wf nil_wf cons_wf subtype_rel_self sorted_wf int_nzero_wf subtype_rel_product le_weakening2 less_than_transitivity2 sq_stable__le select_wf imonomial-less_wf length_wf int_seg_wf all_wf iMonomial_wf subtype_rel_set iPolynomial_wf subtype_rel_list top_wf list_wf list_accum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut hypothesis dependent_functionElimination hypothesisEquality lemma_by_obid isectElimination productEquality intEquality because_Cache applyEquality independent_isectElimination lambdaEquality natural_numberEquality setElimination rename independent_functionElimination introduction imageMemberEquality baseClosed imageElimination setEquality isect_memberEquality voidElimination voidEquality functionEquality

Latex:
\mforall{}X:polynomial-constraints().  no\_repeats(\mBbbZ{}  List;pcs-mon-vars(X))



Date html generated: 2016_05_14-AM-07_10_23
Last ObjectModification: 2016_01_14-PM-08_40_57

Theory : omega


Home Index