Step
*
1
1
1
1
of Lemma
unsat-omega_step
1. n : ℕ
2. eqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
3. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. ¬if eqs = Ax then if ineqs = Ax then 0 otherwise ||hd(ineqs)|| - 1 otherwise ||hd(eqs)|| - 1 < 1
5. ¬(n = 0 ∈ ℤ)
6. xs : ℤ List
7. x1 : (∀as∈eqs.xs ⋅ as =0)
8. x2 : (∀bs∈ineqs.xs ⋅ bs ≥0)
9. first-success(λL.find-exact-eq-constraint(L);eqs) ∈ i:ℕ||eqs||
× x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)}
× {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?
10. i : ℕ||eqs||
11. x : {x:ℤ List| x = eqs[i] ∈ (ℤ List)}
12. x4 : {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ}
13. first-success(λL.find-exact-eq-constraint(L);eqs)
= (inl <i, x, x4>)
∈ (i:ℕ||eqs|| × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)} × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?)
14. |x[x4]| = 1 ∈ ℤ
15. neweqs : {L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List
16. exact-reduce-constraints(eqs[i];x4;eqs) = neweqs ∈ ({L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List)
17. newineqs : {L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List
18. exact-reduce-constraints(eqs[i];x4;ineqs) = newineqs ∈ ({L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List)
⊢ satisfiable(neweqs;newineqs)
⇒ unsat(case gcd-reduce-eq-constraints([];neweqs)
of inl(eqs') =>
case gcd-reduce-ineq-constraints([];newineqs) of inl(ineqs') => inl <eqs', ineqs'> | inr(x) => inr x
| inr(x) =>
inr x )
⇒ False
BY
{ xxx((D 0 THENA Auto) THEN ThinVar `xs' THEN RepeatFor 2 (D -1))xxx }
1
1. n : ℕ
2. eqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
3. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. ¬if eqs = Ax then if ineqs = Ax then 0 otherwise ||hd(ineqs)|| - 1 otherwise ||hd(eqs)|| - 1 < 1
5. ¬(n = 0 ∈ ℤ)
6. first-success(λL.find-exact-eq-constraint(L);eqs) ∈ i:ℕ||eqs||
× x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)}
× {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?
7. i : ℕ||eqs||
8. x : {x:ℤ List| x = eqs[i] ∈ (ℤ List)}
9. x4 : {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ}
10. first-success(λL.find-exact-eq-constraint(L);eqs)
= (inl <i, x, x4>)
∈ (i:ℕ||eqs|| × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)} × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?)
11. |x[x4]| = 1 ∈ ℤ
12. neweqs : {L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List
13. exact-reduce-constraints(eqs[i];x4;eqs) = neweqs ∈ ({L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List)
14. newineqs : {L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List
15. exact-reduce-constraints(eqs[i];x4;ineqs) = newineqs ∈ ({L:ℤ List| ||L|| = ((n - 1) + 1) ∈ ℤ} List)
16. xs : ℤ List
17. (∀as∈neweqs.xs ⋅ as =0)
18. (∀bs∈newineqs.xs ⋅ bs ≥0)
⊢ unsat(case gcd-reduce-eq-constraints([];neweqs)
of inl(eqs') =>
case gcd-reduce-ineq-constraints([];newineqs) of inl(ineqs') => inl <eqs', ineqs'> | inr(x) => inr x
| inr(x) =>
inr x )
⇒ False
Latex:
Latex:
1. n : \mBbbN{}
2. eqs : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
3. ineqs : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
4. \mneg{}if eqs = Ax then if ineqs = Ax then 0 otherwise ||hd(ineqs)|| - 1 otherwise ||hd(eqs)|| - 1 < 1
5. \mneg{}(n = 0)
6. xs : \mBbbZ{} List
7. x1 : (\mforall{}as\mmember{}eqs.xs \mcdot{} as =0)
8. x2 : (\mforall{}bs\mmember{}ineqs.xs \mcdot{} bs \mgeq{}0)
9. first-success(\mlambda{}L.find-exact-eq-constraint(L);eqs) \mmember{} i:\mBbbN{}||eqs||
\mtimes{} x:\{x:\mBbbZ{} List| x = eqs[i]\}
\mtimes{} \{i@0:\mBbbN{}\msupplus{}||eqs[i]||| |eqs[i][i@0]| = 1\} ?
10. i : \mBbbN{}||eqs||
11. x : \{x:\mBbbZ{} List| x = eqs[i]\}
12. x4 : \{i@0:\mBbbN{}\msupplus{}||eqs[i]||| |eqs[i][i@0]| = 1\}
13. first-success(\mlambda{}L.find-exact-eq-constraint(L);eqs) = (inl <i, x, x4>)
14. |x[x4]| = 1
15. neweqs : \{L:\mBbbZ{} List| ||L|| = ((n - 1) + 1)\} List
16. exact-reduce-constraints(eqs[i];x4;eqs) = neweqs
17. newineqs : \{L:\mBbbZ{} List| ||L|| = ((n - 1) + 1)\} List
18. exact-reduce-constraints(eqs[i];x4;ineqs) = newineqs
\mvdash{} satisfiable(neweqs;newineqs)
{}\mRightarrow{} unsat(case gcd-reduce-eq-constraints([];neweqs)
of inl(eqs') =>
case gcd-reduce-ineq-constraints([];newineqs)
of inl(ineqs') =>
inl <eqs', ineqs'>
| inr(x) =>
inr x
| inr(x) =>
inr x )
{}\mRightarrow{} False
By
Latex:
xxx((D 0 THENA Auto) THEN ThinVar `xs' THEN RepeatFor 2 (D -1))xxx
Home
Index