Nuprl Lemma : add-wf-partial
∀[x,y:partial(Base)].  (x + y ∈ partial(ℤ))
Proof
Definitions occuring in Statement : 
partial: partial(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
add: n + m, 
int: ℤ, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
has-value: (a)↓, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
false: False, 
squash: ↓T
Lemmas referenced : 
partial-base, 
partial_wf, 
base_wf, 
base-member-partial, 
int-value-type, 
is-exception_wf, 
partial-not-exception
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :universeIsType, 
intEquality, 
independent_isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
callbyvalueAdd, 
productElimination, 
addEquality, 
because_Cache, 
Error :lambdaFormation_alt, 
addExceptionCases, 
independent_functionElimination, 
voidElimination, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[x,y:partial(Base)].    (x  +  y  \mmember{}  partial(\mBbbZ{}))
Date html generated:
2019_06_20-PM-00_34_17
Last ObjectModification:
2018_10_06-PM-04_56_22
Theory : partial_1
Home
Index