Nuprl Lemma : equiv_rel-wf-quotient
∀[T:Type]. ∀[E1,E2:T ⟶ T ⟶ 𝔹].
(EquivRel(T;x,y.↑E2[x;y])
⇒ EquivRel(T;x,y.↑E1[x;y])
⇒ (∀x,y:T. ((↑E2[x;y])
⇒ (↑E1[x;y])))
⇒ (E1 ∈ (x,y:T//(↑E2[x;y])) ⟶ (x,y:T//(↑E2[x;y])) ⟶ 𝔹))
Proof
Definitions occuring in Statement :
equiv_rel: EquivRel(T;x,y.E[x; y])
,
quotient: x,y:A//B[x; y]
,
assert: ↑b
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
uimplies: b supposing a
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
trans: Trans(T;x,y.E[x; y])
,
sym: Sym(T;x,y.E[x; y])
,
guard: {T}
Lemmas referenced :
all_wf,
assert_wf,
equiv_rel_wf,
bool_wf,
quotient_wf,
iff_imp_equal_bool,
equal_wf,
equal-wf-base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
sqequalRule,
lambdaEquality,
functionEquality,
applyEquality,
functionExtensionality,
hypothesis,
because_Cache,
universeEquality,
pointwiseFunctionalityForEquality,
independent_isectElimination,
pertypeElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
rename,
independent_pairFormation,
dependent_functionElimination,
independent_functionElimination,
productEquality
Latex:
\mforall{}[T:Type]. \mforall{}[E1,E2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}].
(EquivRel(T;x,y.\muparrow{}E2[x;y])
{}\mRightarrow{} EquivRel(T;x,y.\muparrow{}E1[x;y])
{}\mRightarrow{} (\mforall{}x,y:T. ((\muparrow{}E2[x;y]) {}\mRightarrow{} (\muparrow{}E1[x;y])))
{}\mRightarrow{} (E1 \mmember{} (x,y:T//(\muparrow{}E2[x;y])) {}\mrightarrow{} (x,y:T//(\muparrow{}E2[x;y])) {}\mrightarrow{} \mBbbB{}))
Date html generated:
2017_04_14-AM-07_39_41
Last ObjectModification:
2017_02_27-PM-03_11_21
Theory : quot_1
Home
Index