Nuprl Lemma : half-squash-stable_wf
∀[P:ℙ]. (half-squash-stable(P) ∈ ℙ)
Proof
Definitions occuring in Statement : 
half-squash-stable: half-squash-stable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
half-squash-stable: half-squash-stable(P)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
quotient_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P:\mBbbP{}].  (half-squash-stable(P)  \mmember{}  \mBbbP{})
Date html generated:
2017_09_29-PM-05_48_09
Last ObjectModification:
2017_08_30-AM-10_28_59
Theory : quot_1
Home
Index