Nuprl Lemma : not-not-excluded-middle-quot-true

P:ℙ(¬¬⇃(P ∨ P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] not: ¬A or: P ∨ Q true: True
Definitions unfolded in proof :  false: False uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] or: P ∨ Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q not: ¬A all: x:A. B[x]
Lemmas referenced :  not-not-excluded-middle trivial-quotient-true equiv_rel_true true_wf or_wf quotient_wf not_wf
Rules used in proof :  dependent_functionElimination voidElimination independent_functionElimination universeEquality independent_isectElimination lambdaEquality sqequalRule hypothesis because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}\00D9(P  \mvee{}  (\mneg{}P)))



Date html generated: 2017_04_14-AM-07_40_04
Last ObjectModification: 2017_04_11-AM-05_07_16

Theory : quot_1


Home Index