Nuprl Lemma : not-not-excluded-middle-quot-true
∀P:ℙ. (¬¬⇃(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
true: True
Definitions unfolded in proof : 
false: False
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
Lemmas referenced : 
not-not-excluded-middle, 
trivial-quotient-true, 
equiv_rel_true, 
true_wf, 
or_wf, 
quotient_wf, 
not_wf
Rules used in proof : 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination, 
universeEquality, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}P:\mBbbP{}.  (\mneg{}\mneg{}\00D9(P  \mvee{}  (\mneg{}P)))
Date html generated:
2017_04_14-AM-07_40_04
Last ObjectModification:
2017_04_11-AM-05_07_16
Theory : quot_1
Home
Index