Nuprl Lemma : approx-per-for-mono
∀[T:Type]. ∀x,y:Base.  approx-per(T;x;y) supposing x = y ∈ T supposing mono(T)
Proof
Definitions occuring in Statement : 
approx-per: approx-per(T;x;y)
, 
mono: mono(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
approx-per: approx-per(T;x;y)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
mono: mono(T)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
is-above: is-above(T;a;z)
Lemmas referenced : 
mono_wf, 
equal-wf-base-T, 
is-exception_wf, 
has-value_wf_base, 
equal-wf-base, 
sqle_wf_base, 
base_wf, 
is-above_wf
Rules used in proof : 
universeEquality, 
productElimination, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
sqleReflexivity, 
divergentSqle, 
because_Cache, 
dependent_pairFormation, 
independent_pairFormation, 
lambdaFormation, 
rename, 
cumulativity, 
isectElimination, 
extract_by_obid, 
hypothesis, 
axiomEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}x,y:Base.    approx-per(T;x;y)  supposing  x  =  y  supposing  mono(T)
Date html generated:
2018_05_21-PM-00_04_28
Last ObjectModification:
2017_12_30-PM-02_03_09
Theory : rel_1
Home
Index