Nuprl Lemma : connex_functionality_wrt_implies

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  {R[x;y]  R'[x;y]})  {Connex(T;x,y.R[x;y])  Connex(T;x,y.R'[x;y])})


Proof




Definitions occuring in Statement :  connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  connex: Connex(T;x,y.R[x; y]) guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  all_wf or_wf all_functionality_wrt_implies or_functionality_wrt_implies
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity lambdaEquality applyEquality functionExtensionality hypothesis functionEquality universeEquality because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    \{R[x;y]  {}\mRightarrow{}  R'[x;y]\})  {}\mRightarrow{}  \{Connex(T;x,y.R[x;y])  {}\mRightarrow{}  Connex(T;x,y.R'[x;y])\})



Date html generated: 2016_10_21-AM-09_42_22
Last ObjectModification: 2016_08_01-PM-09_49_16

Theory : rel_1


Home Index