Nuprl Lemma : linorder_functionality_wrt_ext-eq

[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ].  Linorder(A;x,y.R[x;y]) ⇐⇒ Linorder(B;x,y.R[x;y]) supposing A ≡ B


Proof




Definitions occuring in Statement :  linorder: Linorder(T;x,y.R[x; y]) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B iff: ⇐⇒ Q implies:  Q linorder: Linorder(T;x,y.R[x; y]) order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] guard: {T} trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) prop: so_apply: x[s1;s2] connex: Connex(T;x,y.R[x; y]) so_lambda: λ2y.t[x; y] rev_implies:  Q
Lemmas referenced :  ext-eq_inversion subtype_rel_weakening equal_wf linorder_wf ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis rename independent_pairFormation lambdaFormation promote_hyp dependent_functionElimination hypothesisEquality applyEquality extract_by_obid isectElimination independent_isectElimination because_Cache independent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  cumulativity functionExtensionality lambdaEquality universeEquality functionEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    Linorder(A;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Linorder(B;x,y.R[x;y])  supposing  A  \mequiv{}  B



Date html generated: 2016_10_21-AM-09_42_29
Last ObjectModification: 2016_07_12-AM-05_03_54

Theory : rel_1


Home Index