Nuprl Lemma : linorder_functionality_wrt_ext-eq
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ].  Linorder(A;x,y.R[x;y]) 
⇐⇒ Linorder(B;x,y.R[x;y]) supposing A ≡ B
Proof
Definitions occuring in Statement : 
linorder: Linorder(T;x,y.R[x; y])
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
linorder: Linorder(T;x,y.R[x; y])
, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
trans: Trans(T;x,y.E[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
connex: Connex(T;x,y.R[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
ext-eq_inversion, 
subtype_rel_weakening, 
equal_wf, 
linorder_wf, 
ext-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
rename, 
independent_pairFormation, 
lambdaFormation, 
promote_hyp, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
cumulativity, 
functionExtensionality, 
lambdaEquality, 
universeEquality, 
functionEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    Linorder(A;x,y.R[x;y])  \mLeftarrow{}{}\mRightarrow{}  Linorder(B;x,y.R[x;y])  supposing  A  \mequiv{}  B
Date html generated:
2016_10_21-AM-09_42_29
Last ObjectModification:
2016_07_12-AM-05_03_54
Theory : rel_1
Home
Index