Nuprl Lemma : member-eq-is-equiv
∀[A,B:Type].  EquivRel(A;x,y.(x ∈ B) = (y ∈ B) ∈ Type) supposing respects-equality(A;B)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
uimplies: b supposing a, 
respects-equality: respects-equality(S;T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
sym: Sym(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
trans: Trans(T;x,y.E[x; y]), 
prop: ℙ
Lemmas referenced : 
respects-equality_wf, 
istype-universe, 
equal-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
because_Cache, 
equalitySymmetry, 
Error :equalityIstype, 
equalityTransitivity, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].    EquivRel(A;x,y.(x  \mmember{}  B)  =  (y  \mmember{}  B))  supposing  respects-equality(A;B)
 Date html generated: 
2019_06_20-PM-00_30_12
 Last ObjectModification: 
2018_11_25-PM-06_18_55
Theory : rel_1
Home
Index