Nuprl Lemma : sq_stable__eqfun_p

[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  SqStable(IsEqFun(T;eq))


Proof




Definitions occuring in Statement :  eqfun_p: IsEqFun(T;eq) bool: 𝔹 sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  eqfun_p: IsEqFun(T;eq) uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] squash: T
Lemmas referenced :  assert_wf assert_witness equal_wf squash_wf uall_wf uiff_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality isect_memberEquality isectElimination productElimination independent_pairEquality axiomEquality hypothesis extract_by_obid applyEquality equalityTransitivity equalitySymmetry independent_functionElimination Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  because_Cache functionEquality universeEquality lemma_by_obid imageElimination lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    SqStable(IsEqFun(T;eq))



Date html generated: 2019_06_20-PM-00_29_13
Last ObjectModification: 2018_09_26-PM-00_00_57

Theory : rel_1


Home Index