Nuprl Lemma : sq_stable__eqfun_p
∀[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  SqStable(IsEqFun(T;eq))
Proof
Definitions occuring in Statement : 
eqfun_p: IsEqFun(T;eq)
, 
bool: 𝔹
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
eqfun_p: IsEqFun(T;eq)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
Lemmas referenced : 
assert_wf, 
assert_witness, 
equal_wf, 
squash_wf, 
uall_wf, 
uiff_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
because_Cache, 
functionEquality, 
universeEquality, 
lemma_by_obid, 
imageElimination, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    SqStable(IsEqFun(T;eq))
Date html generated:
2019_06_20-PM-00_29_13
Last ObjectModification:
2018_09_26-PM-00_00_57
Theory : rel_1
Home
Index