Nuprl Lemma : uanti_sym_functionality_wrt_iff

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  uiff(UniformlyAntiSym(T;x,y.R[x;y]);UniformlyAntiSym(T;x,y.R'[x;y])) supposing ∀[x,y:T].  (R[x;y] ⇐⇒ R'[x;y])


Proof




Definitions occuring in Statement :  uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rev_implies:  Q iff: ⇐⇒ Q implies:  Q guard: {T} uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
Lemmas referenced :  uall_wf isect_wf equal_wf uiff_wf iff_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction hypothesis applyEquality functionExtensionality hypothesisEquality cumulativity sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache equalityTransitivity equalitySymmetry extract_by_obid lambdaEquality addLevel productElimination independent_isectElimination uallFunctionality independent_functionElimination universeEquality functionEquality independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    uiff(UniformlyAntiSym(T;x,y.R[x;y]);UniformlyAntiSym(T;x,y.R'[x;y])) 
    supposing  \mforall{}[x,y:T].    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y])



Date html generated: 2016_10_21-AM-09_42_13
Last ObjectModification: 2016_08_01-PM-09_49_13

Theory : rel_1


Home Index