Nuprl Lemma : utrans_imp_sp_utrans_b
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ((∀[x,y:T].  R[x;y] supposing R[x;y])
  
⇒ UniformlyTrans(T;a,b.R[a;b])
  
⇒ {∀[a,b,c:T].  (strict_part(x,y.R[x;y];a;c)) supposing (strict_part(x,y.R[x;y];a;b) and R[b;c])})
Proof
Definitions occuring in Statement : 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
strict_part: strict_part(x,y.R[x; y];a;b)
, 
guard: {T}
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
not_wf, 
uall_wf, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
productEquality, 
lambdaEquality, 
universeEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}[x,y:T].    R[x;y]  supposing  R[x;y])
    {}\mRightarrow{}  UniformlyTrans(T;a,b.R[a;b])
    {}\mRightarrow{}  \{\mforall{}[a,b,c:T].    (strict\_part(x,y.R[x;y];a;c))  supposing  (strict\_part(x,y.R[x;y];a;b)  and  R[b;c])\}\000C)
Date html generated:
2016_10_21-AM-09_43_02
Last ObjectModification:
2016_08_01-PM-09_48_59
Theory : rel_1
Home
Index