Step
*
1
1
of Lemma
rel-comp-star
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [S] : T ⟶ T ⟶ ℙ
4. ∀n:ℕ. (R o S)^n
⇐⇒ if (n =z 0) then λx,y. (x = y ∈ T) else (R o ((S o R)^n - 1 o S)) fi
5. x : T
6. y : T
7. n : ℕ
8. x (R o S)^n y
⊢ (x (R o ((S o R)^* o S)) y) ∨ (x = y ∈ T)
BY
{ (D 4 With ⌜n⌝ THENA Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. [S] : T ⟶ T ⟶ ℙ
4. x : T
5. y : T
6. n : ℕ
7. x (R o S)^n y
8. (R o S)^n
⇐⇒ if (n =z 0) then λx,y. (x = y ∈ T) else (R o ((S o R)^n - 1 o S)) fi
⊢ (x (R o ((S o R)^* o S)) y) ∨ (x = y ∈ T)
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [S] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. \mforall{}n:\mBbbN{}
(R o S)\^{}n \mLeftarrow{}{}\mRightarrow{} if (n =\msubz{} 0) then \mlambda{}x,y. (x = y) else (R o ((S o R)\^{}n - 1 o S)) fi
5. x : T
6. y : T
7. n : \mBbbN{}
8. x rel\_exp(T; (R o S); n) y
\mvdash{} (x (R o (rel\_star(T; (S o R)) o S)) y) \mvee{} (x = y)
By
Latex:
(D 4 With \mkleeneopen{}n\mkleeneclose{} THENA Auto)
Home
Index