Nuprl Lemma : implies-least-equiv

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  => least-equiv(A;R)


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) rel_implies: R1 => R2 uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  infix_ap: y prop: member: t ∈ T least-equiv: least-equiv(A;R) implies:  Q all: x:A. B[x] rel_implies: R1 => R2 uall: [x:A]. B[x] or: P ∨ Q
Lemmas referenced :  or_wf transitive-reflexive-closure-base-case
Rules used in proof :  universeEquality functionEquality independent_functionElimination dependent_functionElimination hypothesis cumulativity hypothesisEquality functionExtensionality applyEquality lambdaEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inlFormation sqequalRule

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    R  =>  least-equiv(A;R)



Date html generated: 2018_05_21-PM-00_51_57
Last ObjectModification: 2018_01_08-AM-10_15_33

Theory : relations2


Home Index