Nuprl Lemma : implies-least-equiv
∀[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  R => least-equiv(A;R)
Proof
Definitions occuring in Statement : 
least-equiv: least-equiv(A;R)
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
infix_ap: x f y
, 
prop: ℙ
, 
member: t ∈ T
, 
least-equiv: least-equiv(A;R)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
Lemmas referenced : 
or_wf, 
transitive-reflexive-closure-base-case
Rules used in proof : 
universeEquality, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inlFormation, 
sqequalRule
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    R  =>  least-equiv(A;R)
Date html generated:
2018_05_21-PM-00_51_57
Last ObjectModification:
2018_01_08-AM-10_15_33
Theory : relations2
Home
Index