Nuprl Lemma : transitive-closure-induction

[A:Type]. ∀[P:A ⟶ ℙ]. ∀[R:A ⟶ A ⟶ ℙ].
  ((∀x,y:A.  ((x y)  P[x]  P[y]))  (∀x,y:A.  ((x TC(R) y)  P[x]  P[y])))


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B rel_implies: R1 => R2 infix_ap: y trans: Trans(T;x,y.E[x; y]) guard: {T}
Lemmas referenced :  transitive-closure-minimal subtype_rel_self transitive-closure_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  functionEquality applyEquality hypothesis because_Cache sqequalRule Error :inhabitedIsType,  independent_functionElimination Error :universeIsType,  instantiate universeEquality Error :functionIsType,  dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y]))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((x  TC(R)  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])))



Date html generated: 2019_06_20-PM-02_01_30
Last ObjectModification: 2018_10_06-AM-11_23_55

Theory : relations2


Home Index